Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zapolsky, H.

  • Google
  • 1
  • 2
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Evolution of the structure factor in a hyperbolic model of spinodal decomposition34citations

Places of action

Chart of shared publication
Lecoq, Nicolas
1 / 5 shared
Galenko, P.
1 / 2 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Lecoq, Nicolas
  • Galenko, P.
OrganizationsLocationPeople

article

Evolution of the structure factor in a hyperbolic model of spinodal decomposition

  • Zapolsky, H.
  • Lecoq, Nicolas
  • Galenko, P.
Abstract

We consider the modification of the Cahn-Hilliard equation when a time delay process through a memory function is taken into account. The memory effects are seen to affect the dynamics of phase transition at short times. The process of fast spinodal decomposition associated with a conserved order parameter - concentration is studied numerically. Details of a semi-implicit numerical scheme used to simulate the kinetics of spinodal decomposition and evolution of the structure factor are discussed. Analysis of the modeled structure factor predicted by a hyperbolic model of spinodal decomposition is presented in comparison with the parabolic model of Cahn and Hilliard. It is shown that during initial periods of decomposition the structure factor exhibits wave behavior. Analytical treatments explain such behavior by existence of damped oscillations in structure factor at earliest stages of phase separation and at large values of the wave-number. These oscillations disappear gradually in time and the hyperbolic evolution approaches the pure dissipative parabolic evolution of spinodal decomposition.

Topics
  • impedance spectroscopy
  • phase
  • spinodal decomposition
  • phase transition