People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mccann, Edward
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Topologically-Protected Soliton States in Rhombohedrally-Stacked Graphite
- 2023Solitons induced by an in-plane magnetic field in rhombohedral multilayer graphene
- 2021Exchange interaction, disorder, and stacking faults in rhombohedral graphene multilayerscitations
- 2018Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictionscitations
- 2013Multilayer graphenes with mixed stacking structure: Interplay of Bernal and rhombohedral stackingcitations
- 2007The low energy electronic band structure of bilayer graphene.citations
- 2004A tunnel junction between a ferromagnet and a normal metal:Magnon-assisted contribution to thermopower and conductancecitations
- 2004A tunnel junction between a ferromagnet and a normal metal: magnon-assisted contribution to thermopower and conductancecitations
- 2003Magnon-assisted transport and thermopower in ferromagnet-normal-metal tunnel junctionscitations
- 2003Andreev reflection and subgap transport due to electron-magnon interactions in ferromagnet-superconductor junctions.citations
Places of action
Organizations | Location | People |
---|
article
The low energy electronic band structure of bilayer graphene.
Abstract
We employ the tight binding model to describe the electronic band structure of bilayer graphene and we explain how the optical absorption coefficient of a bilayer is influenced by the presence and dispersion of the electronic bands, in contrast to the featureless absorption coefficient of monolayer graphene. We show that the effective low energy Hamiltonian is dominated by chiral quasiparticles with a parabolic dispersion and Berry phase 2π. Layer asymmetry produces a gap in the spectrum but, by comparing the charging energy with the single particle energy, we demonstrate that an undoped, gapless bilayer is stable with respect to the spontaneous opening of a gap. Then, we describe the control of a gap in the presence of an external gate voltage. Finally, we take into account the influence of trigonal warping which produces a Lifshitz transition at very low energy, breaking the isoenergetic line about each valley into four pockets.