People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jamet, Matthieu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Light-driven Electrodynamics and Demagnetization in Fe$_n$GeTe$_2$ (n = 3, 5) Thin Films
- 2024Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emissioncitations
- 2024Two-dimensional to bulk crossover of the WSe2 electronic band structure
- 2022Phonon dynamics and thermal conductivity of PtSe2 thin films: Impact of crystallinity and film thickness on heat dissipation
- 2022Evidence for highly p-type doping and type II band alignment in large scale monolayer WSe2/Se-terminated GaAs heterojunction grown by molecular beam epitaxycitations
- 2021Control of spin-charge conversion in van der Waals heterostructurescitations
- 2021Control of spin–charge conversion in van der Waals heterostructurescitations
- 2021Spin-orbit torques in topological insulator / two-dimensional ferromagnet heterostructures
- 2019Van der Waals solid phase epitaxy to grow large-area manganese-doped MoSe2 few-layers on SiO2/Sicitations
- 2019Van der Waals solid phase epitaxy to grow large-area manganese-doped MoSe$_2$ few-layers on SiO$_2$/Sicitations
- 2018Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe 2 monolayercitations
- 2018Impact of a van der Waals interface on intrinsic and extrinsic defects in an MoSe 2 monolayercitations
- 2018Calculation method of spin accumulations and spin signals in nanostructures using spin resistorscitations
- 2015Spinodal nanodecomposition in semiconductors doped with transition metalscitations
- 2013Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bandscitations
- 2013Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bandscitations
- 2007Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columnscitations
- 2006High-Curie-temperature ferromagnetism in self-organized GeMn nanocolumns
Places of action
Organizations | Location | People |
---|
article
Transition from spin accumulation into interface states to spin injection in silicon and germanium conduction bands
Abstract
Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the electrical spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. Here we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Si and n-Ge using a CoFeB/MgO tunnel contact. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from approximately 150 K up to room temperature. In this regime, the spin signal is reduced down to a value compatible with the standard spin diffusion model. More interestingly, in the case of germanium, we demonstrate a significant modulation of the spin signal by applying a back-gate voltage to the conduction channel. We also observe the inverse spin Hall effect in Ge by spin pumping from the CoFeB electrode. Both observations are consistent with spin accumulation in the Ge conduction band.