Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jiang, J. Y.

  • Google
  • 1
  • 11
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Multi-gap superconductivity in a BaFe1.84Co0.16As2 film from optical measurements at terahertz frequencies25citations

Places of action

Chart of shared publication
Hellstrom, E. E.
1 / 2 shared
Dore, P.
1 / 8 shared
Perucchi, A.
1 / 13 shared
Bark, C. W.
1 / 4 shared
Lupi, S.
1 / 13 shared
Baldassarre, L.
1 / 6 shared
Marini, C.
1 / 20 shared
Eom, C. B.
1 / 4 shared
Putti, M.
1 / 16 shared
Pallecchi, I.
1 / 22 shared
Weiss, J. D.
1 / 1 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Hellstrom, E. E.
  • Dore, P.
  • Perucchi, A.
  • Bark, C. W.
  • Lupi, S.
  • Baldassarre, L.
  • Marini, C.
  • Eom, C. B.
  • Putti, M.
  • Pallecchi, I.
  • Weiss, J. D.
OrganizationsLocationPeople

article

Multi-gap superconductivity in a BaFe1.84Co0.16As2 film from optical measurements at terahertz frequencies

  • Hellstrom, E. E.
  • Dore, P.
  • Perucchi, A.
  • Bark, C. W.
  • Lupi, S.
  • Baldassarre, L.
  • Marini, C.
  • Jiang, J. Y.
  • Eom, C. B.
  • Putti, M.
  • Pallecchi, I.
  • Weiss, J. D.
Abstract

We measured the THz reflectance properties of a high quality epitaxial thin film of the Fe-based superconductor BaFe1.84Co0.16As2 with T (c) = 22.5 K. The film was grown by pulsed laser deposition on a DyScO3 substrate with an epitaxial SrTiO3 intermediate layer. The measured R (S) /R (N) spectrum, i.e. the reflectivity ratio between the superconducting and normal state reflectance, suggests the presence of a superconducting gap Delta (A) close to 15 cm(-1). A detailed data analysis shows that a two-band, two-gap model is necessary to obtain a good description of the measured R (S) /R (N) spectrum. The low-energy Delta (A) gap results to be well determined (Delta (A) = 15.5 +/- 0.5 cm(-1)), while the value of the high-energy gap Delta (B) is more uncertain (Delta (B) = 55 +/- 7 cm(-1)). Our results provide evidence of two electronic contributions to the system conductivity with the presence of two optical gaps corresponding to 2 Delta/kT (c) values close to 2 and 7.

Topics
  • impedance spectroscopy
  • thin film
  • pulsed laser deposition
  • superconductivity
  • superconductivity