Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neville, Tim

  • Google
  • 1
  • 6
  • 76

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Laboratory study on subgrade fluidization under undrained cyclic triaxial loading76citations

Places of action

Chart of shared publication
Kelly, Richard
1 / 2 shared
Leroueil, Serge
1 / 2 shared
Singh, Mandeep
1 / 6 shared
Abeywickrama, Aruni
1 / 1 shared
Indraratna, Buddhima
1 / 1 shared
Nguyen, Thanh Trung
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Kelly, Richard
  • Leroueil, Serge
  • Singh, Mandeep
  • Abeywickrama, Aruni
  • Indraratna, Buddhima
  • Nguyen, Thanh Trung
OrganizationsLocationPeople

article

Laboratory study on subgrade fluidization under undrained cyclic triaxial loading

  • Kelly, Richard
  • Leroueil, Serge
  • Singh, Mandeep
  • Neville, Tim
  • Abeywickrama, Aruni
  • Indraratna, Buddhima
  • Nguyen, Thanh Trung
Abstract

<jats:p>A long-term issue that has hampered the efficient operation of heavy-haul tracks is the migration of fluidized fines from the shallow soft subgrade to the overlying ballast, i.e., mud pumping. This paper presents a series of undrained cyclic triaxial tests where realistic cyclic loading conditions were simulated at low confining pressure that is typical of shallow subgrade beneath a ballast track. Subgrade soil specimens with a low-plasticity index collected from a field site with recent history of mud pumping were tested at frequencies from 1.0 to 5.0 Hz and a cyclic stress ratio (CSR) from 0.1 to 1.0. The experimental results indicate that under adverse loading conditions of critical cyclic stress ratio (CSR<jats:sub>c</jats:sub>) and frequency, there is upward migration of moisture and the finest particles towards the specimen top and this causes the uppermost part of the soil specimen to soften and fluidize. Conversely, a smaller value of CSR tends to maintain stability of the specimen despite the increasing number of loading cycles. It is noteworthy that for any given combination of CSR and frequency, the relative compaction has a significant influence on the cyclic behaviour of the soil and its potential for fluidization.</jats:p>

Topics
  • impedance spectroscopy
  • plasticity