People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chapman, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Self-swabbing versus assisted swabbing for viral detection by qRT-PCR: the experience from SARS-CoV-2 based on a meta-analysis of six prospectively designed evaluations conducted in a UK settingcitations
- 2021Ultra-high speed X-ray imaging of dynamic fracturing in cementitious materials under impact ; Imagerie aux rayons X ultra-rapide de la fracturation dynamique dans des matériaux cimentaires sous impactcitations
- 2020Experimental investigation into the effects of cast-iron pipe corrosion on GPR detection performance in clay soilscitations
- 2017Unique Insight into the Seasonal Variability of Geophysical Properties of Field Soils: Practical Implications for Near Surface Investigationscitations
- 2017Seasonal variations measured by TDR and GPR on an anthropogenic sandy soil and the implications for utility detectioncitations
- 2014Factors affecting soil permittivity and proposals to obtain gravimetric water content from time domain reflectometry measurementscitations
- 2013Impact of millimeter-size silicon microchips on the mechanical properties of polymer samples tested under flexural bending, long-term creep,and impact conditionscitations
- 2012Construction and calibration of a field TDR monitoring stationcitations
- 2011Pipeline Engineering in the Ground: the impact of Ground Conditions on Pipeline Condition and Maintenance Operationscitations
- 2010Electromagnetic Properties of the Ground: Part II - The Properties of Two Selected fine-Grained Soilscitations
- 2010Electromagnetic Properties of the Ground: Part 1 - Fine-Grained Soils at the Liquid Limitcitations
- 2008Broadband apparent permittivity measurement in dispersive soils using quarter-wavelength analysiscitations
Places of action
Organizations | Location | People |
---|
article
Factors affecting soil permittivity and proposals to obtain gravimetric water content from time domain reflectometry measurements
Abstract
Time domain reflectometry (TDR) measures the apparent relative dielectric permittivity (ARDP) of a soil and is commonly used to determine the volumetric water content (VWC) of the soil. ARDP is affected by several factors in addition to water content, such as the soil’s electrical conductivity, temperature, and density. These relationships vary with soil type and are very soil-dependent, and despite previous research, they are still not fully understood. A multivariate statistical approach (principal component analysis, PCA) is used to describe a range of soils from two separate sites in the UK (clay and silty sand – sandy silt). The advantage of a PCA is that it considers several variables at a time, giving an immediate picture of their underlying relationships. It was found that for the studied soils, ARDP was positively correlated with VWC and bulk electrical conductivity, but did not show any dependence on some other geotechnical parameters. TDR has recently been used in geotechnical engineering for measuring the gravimetric water content (GWC) and dry density. However, the current approaches require a custom-made TDR probe and an extensive site specific empirical laboratory calibration. To extend the potential use of TDR in the geotechnical industry, three relatively simple methods are proposed to estimate the GWC from VWC (derived from the measured ARDP values) and dry density depending on the amount of information known about the soil. Examples of possible applications of these methods include continuous monitoring of consolidation adjacent to a structure, the effect of seasonal weather and climate change on ageing earthwork assets, and the shrink–swell potential adjacent to trees. All three methods performed well, with between 83% and 98% of the data lying within a ±5% GWC envelope, with the data for clay soils performing better than those for silty sands – sandy silts. This is partly due to the fact that the applied relationship converting ARDP to VWC performs better for clays than silty sands – sandy silts, as well as less variation of the estimated bulk density that is needed to derive the dry density.