Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uilenreef, Joost J.

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs5citations

Places of action

Chart of shared publication
Gorissen, Ben M. C.
1 / 1 shared
Bergmann, Willie
1 / 1 shared
Wolschrijn, Claudia F.
1 / 1 shared
Rietbergen, Bert Van
1 / 1 shared
Meijer, Ellen
1 / 1 shared
Weeren, P. René Van
1 / 5 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Gorissen, Ben M. C.
  • Bergmann, Willie
  • Wolschrijn, Claudia F.
  • Rietbergen, Bert Van
  • Meijer, Ellen
  • Weeren, P. René Van
OrganizationsLocationPeople

article

Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs

  • Gorissen, Ben M. C.
  • Bergmann, Willie
  • Uilenreef, Joost J.
  • Wolschrijn, Claudia F.
  • Rietbergen, Bert Van
  • Meijer, Ellen
  • Weeren, P. René Van
Abstract

<p>Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term meloxicam treatment on growing pigs were studied. Twelve piglets (n=6 receiving daily meloxicam 0.4 mg/kg orally from 48 until 110 days of age; n=6 receiving only applesauce (vehicle control)) were subjected to visual and objective gait analysis by pressure plate measurements at several time points. Following euthanasia a complete postmortem examination was performed and samples of the talus and distal tibia, including the distal physis, were collected. Trabecular bone microarchitecture was analysed by microCT scanning, bone stiffness by compression testing and growth plate morphology using light microscopy. Animals were not lame and gait patterns did not differ between the groups. Pathological examination revealed no lesions compatible with known side effects of NSAIDs. Trabecular bone microarchitecture and growth plate morphology did not differ between the two groups. The findings of this in vivo study reduce concerns regarding the long-term use of meloxicam in young, growing piglets.</p>

Topics
  • impedance spectroscopy
  • morphology
  • microscopy