People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czarnecki, Piotr
Adam Mickiewicz University in Poznań
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022Above-room-temperature ferroelectricity and piezoelectric activity of dimethylglycinium-dimethylglycine chloridecitations
- 2012New ferroelectric: Bis-thiourea pyridinium bromide inclusion compoundcitations
- 2012Structures and phase transitions in a new ferroelectric-pyridinium chlorochromate-studied by X-ray diffraction, DSC and dielectric methodscitations
- 2010The neutron diffraction study, calorimetry and spontaneous polarization of pyridinium perrhenate at 350, 300 and 100Kcitations
- 2009Discovery of an intermediate phase in bis-thiourea pyridinium chloride inclusion compound.citations
- 2009Discovery of an intermediate phase in bis-thiourea pyridinium chloride inclusion compoundcitations
- 2008Redetermination of the structure and dielectric properties of bis(thiourea) pyridinium iodide - A new ferroelectric inclusion compoundcitations
- 2007Phase transitions in ferroelectric pyridinium periodide under high pressurecitations
- 2006Structure, phase transitions and dielectric properties of a new inclusion compound of bis-thiourea pyridinium nitrate saltcitations
- 2006Dielectric response of the relaxor ferroelectric Pb(Mg<inf>1/3</inf>Nb <inf>2/3</inf>)O<inf>3</inf> in the nonergodic state after a DC electric field is turned off
- 2005Decoupling of the order-disorder and displacive contributions to the phase transition in NH<inf>4</inf>H(ClH<inf>2</inf>CCOO)<inf>2</inf>citations
- 2005Compositional and pressure effects on the phase transition in ferroelectric NH<inf>4</inf>H(ClH<inf>2</inf>CCOO)<inf>2</inf>
- 2003Effect of hydrostatic pressure on the dielectric response of Pb(Mg 1/3Nb2/3)O3 relaxorcitations
- 2003The neutron diffraction study of pyridinium periodate at 352, 300 and 100 Kcitations
- 20012-5 pyrochlore relaxor ferroelectric Cd<inf>2</inf>Nb<inf>2</inf>O<inf>7</inf> and its Fe<sup>2+</sup>/Fe<sup>3+</sup> modificationscitations
- 2001Structure and dynamics of ferroelectric pyridinium periodatecitations
- 2000High pressure study of cation dynamics in pyridinium Perchloratecitations
- 2000Structure and dielectric properties of ferroelectric pyridinium perrhenate crystalscitations
Places of action
Organizations | Location | People |
---|
article
Dielectric response of the relaxor ferroelectric Pb(Mg<inf>1/3</inf>Nb <inf>2/3</inf>)O<inf>3</inf> in the nonergodic state after a DC electric field is turned off
Abstract
<p>The Pb(Mg<sub>1/3</sub>Nb<sub>2/3</sub>)O<sub>3</sub> (PMN) relaxor system is used as an example to analyze the temperature dependences of the low-frequency dielectric permitivity (ε′(T)) measured during zero-field heating (ZFH) from T = 10 K to T = 300 K after using different field cooling (FC) conditions. No changes in the temperature dependences of the permittivity have been detected during the transition from a nonergodic relaxor state (NERS) into an ergodic relaxor state (ERS) (at T <sub>f</sub> ≈ 216 K). However, the difference Δε′(T) between the curves corresponding to different field cooling conditions in the same electric field has different shapes and different values below and above T → (T <sub>f</sub> + 9 K)<sup>-</sup> (for E <sub>dc</sub> = 1.52 kV/cm). The reduced permittivities ε′<sub>r</sub>(T, f) recorded under different cooling conditions are shown to change their behavior when passing through T = T <sub>f</sub> + 9 K. In NERS, these curves diverge: the stronger the field (0 ≤ E <sub>dc</sub> ≤ 3 kV/cm), the larger the divergence. In ERS, however, the ε′<sub>r</sub>(T, f) curves coincide under different cooling conditions irrespective of the field. The character of the changes in Δε′(T) and ε′<sub>r</sub> (T, f) during the NERS-ERS transition is frequency-independent. The difference in the behavior of the dielectric response during ZFH after cooling in different (ZFC, FC) modes (even in a weak field), for both transition through T <sub>f</sub> and cooling down to T = 10 K, indicates different NERSs forming under these conditions. The contribution to ε′(T) from slowly relaxing regions (ω ∼ 0.1 mHz), whose polarization is reoriented after the field is turned off, is responsible for the fact that, during the NERS-ERS transition, the ε′<sub>r</sub>(T, f) curves coincide at a temperature that is higher than T = T <sub>f</sub>. © Pleiades Publishing, Inc., 2006.</p>