People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gusakova, Daria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Dynamic imprinting of nanoscale topological phases into an antiferromagnet
- 2021Theoretical study of current-induced domain wall motion in magnetic nanotubes with azimuthal domainscitations
- 2021Theoretical study of current-induced domain wall motion in magnetic nanotubes with azimuthal domainscitations
- 2020Theoretical study of current-induced domain wall motion in magnetic nanotubes with azimuthal domains, including OErsted field and spin-transfer torques
- 2019Fast domain wall motion governed by topology and OErsted fields in cylindrical magnetic nanowirescitations
- 2006Density of states in SF bilayers with arbitrary strength of magnetic scatteringcitations
Places of action
Organizations | Location | People |
---|
article
Density of states in SF bilayers with arbitrary strength of magnetic scattering
Abstract
We developed the self-consistent method for the calculation of the density of states $N()$ in the SF bilayers. It based on the quasi-classical Usadel equations and takes into account the suppression of superconductivity in the S layer due to the proximity effect with the F metal, as well as existing mechanisms of the spin dependent electron scattering. We demonstrate that the increase of the spin orbit or spin flip electron scattering rates results in completely different transformations of $N()$ at the free F layer interface. The developed formalism has been applied for the interpretation of the available experimental data.