Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kislov, E. V.

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Genetic Interpretation of the Distribution of PGE and Chalcogens in Sulfide-Mineralized Ultramafic Rocks from the Yoko-Dovyren Layered Intrusion10citations

Places of action

Chart of shared publication
Pshenitsyn, I. V.
1 / 1 shared
Nikolaev, G. S.
1 / 1 shared
Danyushevsky, L. V.
1 / 2 shared
Ariskin, A. A.
1 / 1 shared
Fiorentini, Marco
1 / 8 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Pshenitsyn, I. V.
  • Nikolaev, G. S.
  • Danyushevsky, L. V.
  • Ariskin, A. A.
  • Fiorentini, Marco
OrganizationsLocationPeople

article

Genetic Interpretation of the Distribution of PGE and Chalcogens in Sulfide-Mineralized Ultramafic Rocks from the Yoko-Dovyren Layered Intrusion

  • Pshenitsyn, I. V.
  • Kislov, E. V.
  • Nikolaev, G. S.
  • Danyushevsky, L. V.
  • Ariskin, A. A.
  • Fiorentini, Marco
Abstract

<p>Abstract—: The paper presents newly acquired data on concentrations of chalcophile elements and chalcogens (Se and Te) in sulfide-bearing rocks and Cu–Ni ores from the bottom portion of the Yoko-Dovyren Massif, northern Baikal area, Russia. Positive covariations between Pd, Pt, Au, S, and Te in the samples highlight sulfide control on the behavior of these elements, which was related to the redistribution of essentially Fe–Ni sulfide liquids at a magmatic stage. The character of relationships between Pd, Pt, Te, Cu, and S in the rocks led us to distinguish two groups of genetic trends: the first group combines samples from the chilled zone, plagioperidotites, and olivine gabbronorites that compose underlying sills in the central part of the intrusion, and the second one comprises poor and high-grade ores in the northeastern termination of the intrusion (Ozernyi Prospect). We put forward the hypothesis that the first-group trends reflect different degrees of accumulation of crystallization products of the most primitive sulfide liquids, whereas the trends of the second group pertain to sulfide matter significantly depleted in Cu, Te, and PGE. New data on Fe, Ni, Cu, Co, Se, Te, Zn, Mo, Ag, Cd, Sb, Pb, Rh, PGE, and Au concentrations in sulfides from the chilled gabbronorite and ores of the Baikalskoe deposit are presented. Results of thermodynamic modeling (with the COMAGMAT-5 program package) of sulfide saturation in the intercumulus of a primitive orthocumulate are used to reproduce the composition (Cu, Pd, Pt, Au, and Te) of the parental sulfide liquid. The model concentrations of noble metals in the sulfide are demonstrated to be one to two orders of magnitude higher than the concentrations in the “average sulfide” estimated by LA–ICP–MS. More realistic estimates for the composition of the parental sulfide liquids can be obtained by normalizing the bulk concentrations of these elements to 100% sulfide mass. These estimates are in good agreement with results from thermodynamic simulations.</p>

Topics
  • simulation
  • layered
  • mass spectrometry
  • crystallization
  • normalizing