Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lorent, Natalie

  • Google
  • 1
  • 10
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Multicenter study of the performance of NTM Elite agar for the detection of nontuberculous mycobacteria from patients with cystic fibrosis1citations

Places of action

Chart of shared publication
Beuselinck, Kurt
1 / 1 shared
Deiwick, Susanne
1 / 1 shared
André, Emmanuel
1 / 4 shared
Dupont, Lieven
1 / 2 shared
Kahl, Barbara
1 / 1 shared
Perry, John
1 / 2 shared
Gafsi, Johanne
1 / 1 shared
Laenen, Lies
1 / 1 shared
Raymaekers, Lise
1 / 1 shared
Bleyenbergh, Pascal Van
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Beuselinck, Kurt
  • Deiwick, Susanne
  • André, Emmanuel
  • Dupont, Lieven
  • Kahl, Barbara
  • Perry, John
  • Gafsi, Johanne
  • Laenen, Lies
  • Raymaekers, Lise
  • Bleyenbergh, Pascal Van
OrganizationsLocationPeople

article

Multicenter study of the performance of NTM Elite agar for the detection of nontuberculous mycobacteria from patients with cystic fibrosis

  • Beuselinck, Kurt
  • Deiwick, Susanne
  • André, Emmanuel
  • Dupont, Lieven
  • Kahl, Barbara
  • Lorent, Natalie
  • Perry, John
  • Gafsi, Johanne
  • Laenen, Lies
  • Raymaekers, Lise
  • Bleyenbergh, Pascal Van
Abstract

<jats:title>ABSTRACT</jats:title><jats:sec><jats:title/><jats:p>The performance of a novel selective agar was evaluated against the performance of conventional mycobacterial cultures, i.e., a combination of the mycobacterial growth indicator tube (MGIT) with Löwenstein-Jensen (LJ), for the detection of nontuberculous mycobacteria (NTM) in sputum samples from people with cystic fibrosis (pwCF). Two hundred eighty-three sputum samples (231 fresh sputum and 52 spiked sputum) from 143 pwCF were collected. They were inoculated without prior decontamination on NTM Elite agar (30°C ± 2°C for 28 days) and inoculated on both MGIT and LJ (35°C–37°C for 6–8 weeks) after N-acetyl-L-cysteine-2% sodium hydroxide decontamination. NTM were identified by Matrix-Assisted Laser Desorption Ionization/Time of Flight Mass Spectrometry and/or PCR, and whole-genome sequencing. A total of 67 NTM were recovered overall by the combination of all culture media. NTM Elite agar allowed the recovery of 65 NTM (97%), compared to 22 for the conventional MGIT and LJ media combination (32.8%), including 22 NTM for MGIT (32.8%) and 3 NTM with the LJ medium (4.5%). For<jats:italic>Mycobacterium abscessus</jats:italic>complex, the sensitivity of NTM Elite agar was 95% compared with a sensitivity of 30% for the conventional MGIT and LJ media combination. Overall, 17.3% of cultures on NTM Elite agar were contaminated with other micro-organisms vs 46.3% on MGIT and 77% on LJ. This study shows that the novel selective agar (NTM Elite agar) significantly outperforms the conventional MGIT and LJ media combination in terms of sensitivity, selectivity, and ease of culture, without the requirement of an L3 laboratory.</jats:p><jats:sec><jats:title>IMPORTANCE</jats:title><jats:p>Nontuberculous mycobacteria (NTM) are significant pulmonary pathogens in patients with pre-existing structural lung conditions such as cystic fibrosis, bronchiectasis, or chronic obstructive pulmonary disease.<jats:italic>Mycobacterium avium</jats:italic>complex and<jats:italic>Mycobacterium abscessus</jats:italic>complex (MABSC) are the most frequently isolated organisms. Compared to the recommended culture method for NTM, which combines solid and liquid culture media, NTM Elite agar enables a faster/easier diagnosis and speeds up identification and susceptibility testing as the final reading is at 28 days instead of 6–8 weeks for the conventional mycobacterial cultures. In addition, for the NTM Elite agar, no decontamination stage before inoculation is necessary, unlike the conventional mycobacterial cultures. NTM Elite agar is derived from a formulation of medium adapted to rapidly growing mycobacteria (RGM). The medium enables the growth of RGM while suppressing other flora. It is supported with published clinical data showing the benefits of this medium.</jats:p></jats:sec></jats:sec>

Topics
  • impedance spectroscopy
  • Sodium
  • mass spectrometry
  • size-exclusion chromatography
  • susceptibility
  • spectrometry