People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Dongen, Bart
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2010Factors controlling material deposition in the CVD of nickel sulfides, selenides or phosphides from dichalcogenoimidodiphosphinato complexes: Deposition, spectroscopic and computational studiescitations
- 2010Impact of silver(I) on the metabolism of Shewanella oneidensiscitations
- 2009Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA)citations
Places of action
Organizations | Location | People |
---|
article
Impact of silver(I) on the metabolism of Shewanella oneidensis
Abstract
Anaerobic cultures of Shewanella oneidensis MR-1 reduced toxic Ag(I), forming nanoparticles of elemental Ag(0), as confirmed by X-ray diffraction analyses. The addition of 1 to 50 μM Ag(I) had a limited impact on growth, while 100 μM Ag(I) reduced both the doubling time and cell yields. At this higher Ag(I) concentration transmission electron microscopy showed the accumulation of elemental silver particles within the cell, while at lower concentrations the metal was exclusively reduced and precipitated outside the cell wall. Whole organism metabolite fingerprinting, using the method of Fourier transform infrared spectroscopy analysis of cells grown in a range of silver concentrations, confirmed that there were significant physiological changes at 100 μM silver. Principal component-discriminant function analysis scores and loading plots highlighted changes in certain functional groups, notably, lipids, amides I and II, and nucleic acids, as being discriminatory. Molecular analyses confirmed a dramatic drop in cellular yields of both the phospholipid fatty acids and their precursor molecules at high concentrations of silver, suggesting that the structural integrity of the cellular membrane was compromised at high silver concentrations, which was a result of intracellular accumulation of the toxic metal. Copyright © 2010, American Society for Microbiology. All Rights Reserved.