People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lloyd, Jonathan R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023An investigation into the role of c-type cytochromes and extracellular flavins in the bioreduction of uranyl(VI) by <i>Shewanella oneidensis</i> using fluorescence spectroscopy and microscopycitations
- 2023Anaerobic biodegradation of citric acid in the presence of Ni and U at alkaline pH; impact on metal fate and speciationcitations
- 2023Copper bioreduction and nanoparticle synthesis by an enrichment culture from a former copper minecitations
- 2020Biomineralization of Cu2S nanoparticles by Geobacter sulfurreducenscitations
- 2020Enhanced microbial degradation of irradiated cellulose under hyperalkaline conditionscitations
- 2019Bioelectrochemical treatment and recovery of copper from distillery waste effluents using power and voltage control strategiescitations
- 2018Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field sitecitations
- 2018Response of Bentonite Microbial Communities to Stresses Relevant to Geodisposal of Radioactive Wastecitations
- 2018A Novel Adaptation Mechanism Underpinning Algal Colonization of a Nuclear Fuel Storage Pondcitations
- 2018Biosynthesis and Characterization of Copper Nanoparticles Using Shewanella oneidensis: Application for Click Chemistrycitations
- 2016Bacterial Diversity in the Hyperalkaline Allas Springs (Cyprus), a Natural Analogue for Cementitious Radioactive Waste Repositorycitations
- 2016Imaging the hydrated microbe-metal interface using nanoscale spectrum imagingcitations
- 2016Biogenic methane in shale gas and coal bed methanecitations
- 2015Microbial degradation of cellulosic material under intermediate-level waste simulated conditionscitations
- 2014The Impact of γ Radiation on the Bioavailability of Fe(III) Minerals for Microbial Respirationcitations
- 2014Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic propertiescitations
- 2014Biosynthesis of zinc substituted magnetite nanoparticles with enhanced magnetic propertiescitations
- 2014An Electrochemical Study of the Influence of Marinobacter aquaeolei on the Alteration of Hydrothermal Chalcopyrite (CuFeS2) and Pyrite (FeS2) under Circumneutral Conditionscitations
- 2011Geochemical and microbial controls of the decomposition of depleted uranium in the environment: Experimental studies using soil microorganismscitations
- 2010Phenotypic characterization of shewanella oneidensis MR-1 under aerobic and anaerobic growth conditions by using fourier transform infrared spectroscopy and high-performance liquid chromatography analysescitations
- 2010Impact of silver(I) on the metabolism of Shewanella oneidensiscitations
- 2009Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic propertiescitations
- 2009Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic propertiescitations
- 2008Biomineralization: Linking the fossil record to the production of high value functional materialscitations
- 2007Time-resolved synchrotron X-ray powder diffraction study of biogenic nanomagnetitecitations
- 2005Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducenscitations
- 2005Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclidescitations
Places of action
Organizations | Location | People |
---|
article
Impact of silver(I) on the metabolism of Shewanella oneidensis
Abstract
Anaerobic cultures of Shewanella oneidensis MR-1 reduced toxic Ag(I), forming nanoparticles of elemental Ag(0), as confirmed by X-ray diffraction analyses. The addition of 1 to 50 μM Ag(I) had a limited impact on growth, while 100 μM Ag(I) reduced both the doubling time and cell yields. At this higher Ag(I) concentration transmission electron microscopy showed the accumulation of elemental silver particles within the cell, while at lower concentrations the metal was exclusively reduced and precipitated outside the cell wall. Whole organism metabolite fingerprinting, using the method of Fourier transform infrared spectroscopy analysis of cells grown in a range of silver concentrations, confirmed that there were significant physiological changes at 100 μM silver. Principal component-discriminant function analysis scores and loading plots highlighted changes in certain functional groups, notably, lipids, amides I and II, and nucleic acids, as being discriminatory. Molecular analyses confirmed a dramatic drop in cellular yields of both the phospholipid fatty acids and their precursor molecules at high concentrations of silver, suggesting that the structural integrity of the cellular membrane was compromised at high silver concentrations, which was a result of intracellular accumulation of the toxic metal. Copyright © 2010, American Society for Microbiology. All Rights Reserved.