People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharma, Prashant K.
University Medical Center Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Modulating the water behavior, microstructure, and viscoelasticity of plasma-derived hydrogels by adding silica nanoparticles with tailored chemical and colloidal propertiescitations
- 2022Viscoelastic properties of plasma-agarose hydrogels dictate favorable fibroblast responses for skin tissue engineering applicationscitations
- 2021Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine discs and dentinal tubulescitations
- 2019Chemical biofilm removal capacity of endodontic irrigants as a function of biofilm structurecitations
- 2019Chemical efficacy of several NaOCl concentrations on biofilms of different architecturecitations
- 2019Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady-state dual-species biofilmscitations
- 2018Notochordal cell matrix as a bioactive lubricant for the osteoarthritic jointcitations
- 2017Implant Failurecitations
- 2013Stress relaxation analysis facilitates a quantitative approach towards antimicrobial penetration into biofilmscitations
- 2013A Distinguishable Role of eDNA in the Viscoelastic Relaxation of Biofilmscitations
- 2009Tunable Visible Emission of Ag-Doped CdZnS Alloy Quantum Dots
- 2009Bacterial Adhesion to Diamond-like Carbon as Compared to Stainless Steelcitations
- 2009Hyphal content determines the compression strength of Candida albicans biofilmscitations
- 2008Physicochemical and microbial fouling characterization of novel, extremely hydrophobic, nanocomposite diamond like carbon polymer hybrid coatings
- 2007Low-load compression testingcitations
- 2007Low-load compression testing:a novel way of measuring biofilm thicknesscitations
- 2001Surface chemical characterisation of Paenibacillus polymyxa before and after adaptation to sulfide mineralscitations
Places of action
Organizations | Location | People |
---|
article
Low-load compression testing
Abstract
<p>Biofilms are complex and dynamic communities of microorganisms that are studied in many fields due to their abundance and economic impact. Biofilm thickness is an important parameter in biofilm characterization. Current methods of measuring biofilm thicknesses have several limitations, including application, availability, and costs. Here, we present low-load compression testing (LLCT) as a new method for measuring biofilm thickness. With LLCT, biofilm thicknesses are measured during compression by inducing small loads, up to 5 Pa, corresponding to 0.1% deformation, making LLCT essentially a nondestructive technique. Comparison of the thicknesses of various bacterial and yeasts biofilms obtained by LLCT and by using confocal laser scanning microscopy (CLSM) resulted in the conclusion that CLSM underestimates the biofilm thickness due to poor penetration of different fluorescent dyes, especially through the thicker biofilms, whereas LLCT does not suffer from this thickness limitation.</p>