Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boudreau, Dominique K.

  • Google
  • 1
  • 7
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Molecular Method for Detection of Total Coliforms in Drinking Water Samples45citations

Places of action

Chart of shared publication
Dion-Dupont, Vanessa
1 / 1 shared
Bisson, Marc-Antoine
1 / 1 shared
Nkuranga, Martine
1 / 1 shared
Bouchard, Sébastien
1 / 1 shared
Rodriguez, Manuel J.
1 / 1 shared
Bergeron, Michel G.
1 / 5 shared
Maheux, Andrée F.
1 / 2 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Dion-Dupont, Vanessa
  • Bisson, Marc-Antoine
  • Nkuranga, Martine
  • Bouchard, Sébastien
  • Rodriguez, Manuel J.
  • Bergeron, Michel G.
  • Maheux, Andrée F.
OrganizationsLocationPeople

article

Molecular Method for Detection of Total Coliforms in Drinking Water Samples

  • Dion-Dupont, Vanessa
  • Bisson, Marc-Antoine
  • Nkuranga, Martine
  • Bouchard, Sébastien
  • Rodriguez, Manuel J.
  • Bergeron, Michel G.
  • Boudreau, Dominique K.
  • Maheux, Andrée F.
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>This work demonstrates the ability of a bacterial concentration and recovery procedure combined with three different PCR assays targeting the<jats:italic>lacZ</jats:italic>,<jats:italic>wecG</jats:italic>, and 16S rRNA genes, respectively, to detect the presence of total coliforms in 100-ml samples of potable water (presence/absence test). PCR assays were first compared to the culture-based Colilert and MI agar methods to determine their ability to detect 147 coliform strains representing 76 species of<jats:named-content content-type="genus-species">Enterobacteriaceae</jats:named-content>encountered in fecal and environmental settings. Results showed that 86 (58.5%) and 109 (74.1%) strains yielded a positive signal with Colilert and MI agar methods, respectively, whereas the<jats:italic>lacZ</jats:italic>,<jats:italic>wecG</jats:italic>, and 16S rRNA PCR assays detected 133 (90.5%), 111 (75.5%), and 146 (99.3%) of the 147 total coliform strains tested. These assays were then assessed by testing 122 well water samples collected in the Québec City region of Canada. Results showed that 97 (79.5%) of the samples tested by culture-based methods and 95 (77.9%), 82 (67.2%), and 98 (80.3%) of samples tested using PCR-based methods contained total coliforms, respectively. Consequently, despite the high genetic variability of the total coliform group, this study demonstrated that it is possible to use molecular assays to detect total coliforms in potable water: the 16S rRNA molecular assay was shown to be as efficient as recommended culture-based methods. This assay might be used in combination with an<jats:named-content content-type="genus-species">Escherichia coli</jats:named-content>molecular assay to assess drinking water quality.</jats:p>

Topics
  • impedance spectroscopy