Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gerger, Sabrina Stefanie

  • Google
  • 1
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Hydrothermal and ionothermal synthesis of mineral-related arsenates in the system CdO-MO-As2O5 (M2+ = Mg, Co, Ni, Cu, Zn) and their crystal structures3citations

Places of action

Chart of shared publication
Đorđević, Tamara
1 / 18 shared
Karanovic, Ljiljana
1 / 6 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Đorđević, Tamara
  • Karanovic, Ljiljana
OrganizationsLocationPeople

article

Hydrothermal and ionothermal synthesis of mineral-related arsenates in the system CdO-MO-As2O5 (M2+ = Mg, Co, Ni, Cu, Zn) and their crystal structures

  • Đorđević, Tamara
  • Karanovic, Ljiljana
  • Gerger, Sabrina Stefanie
Abstract

<p>During systematic research on the mineral-related arsenates in the system CdO-MO-As<sub>2</sub>O<sub>5</sub>-H<sub>2</sub>O (M<sup>2+</sup> = Mg, Co, Ni, Cu, Zn), three new Cd-containing arsenates Cd<sub>4.65</sub>Ni<sub>0.35</sub> (AsO<sub>4</sub>)2(HAsO<sub>4</sub>)<sub>2</sub>4H<sub>2</sub>O (1), Cd<sub>0.75</sub>Co<sub>2.75</sub> (H<sub>0.5</sub>AsO<sub>4</sub>)2(HAsO<sub>4</sub>) (2) and Cd<sub>1.25</sub>Zn<sub>0.75</sub> (HAsO<sub>4</sub>)<sub>2</sub>2H<sub>2</sub>O (3) have been synthesized under hydrothermal conditions, while the Zn-arsenate Zn<sub>9</sub> (AsO<sub>4</sub>)<sub>6</sub>4H<sub>2</sub>O (4) and again 2 have been prepared under ionothermal conditions using the ionic liquid 1-ethyl-3-methylimidazolium bromide, (C6H11N2)Br, as the solvent. Their crystal structures were determined using single-crystal X-ray diffraction data and refined to the reasonably low R-values: 1 - R<sub>1</sub> = 0.030; 2 - R<sub>1</sub> = 0.047; 3 - R<sub>1</sub> = 0.029; 6 - R<sub>1</sub> = 0.029. The compounds 1, 2 and 3 are structural analogues of three different arsenate mineral phases. Compound 4 was for the first time synthesized using ionic liquid as the solvent and the hydrogen atoms were found and refined. Infrared and Raman spectra were measured and evaluated in order to obtain further information on the anion groups and especially on the short hydrogen bonds. The OH stretching frequency is in good agreement with the observed O:::O distances. The different approaches in the synthesis of mineral-related arsenates, the temperature treatment as well as the role of added water in ionothermal synthesis are also discussed.</p>

Topics
  • impedance spectroscopy
  • mineral
  • compound
  • phase
  • x-ray diffraction
  • Hydrogen