People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vitillo, Jenny Grazia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2018Understanding and Controlling the Dielectric Response of Metal–Organic Frameworkscitations
- 2018Time-resolved operando studies of carbon supported Pd nanoparticles under hydrogenation reactions by X-ray diffraction and absorptioncitations
- 2018On the structure of superbasic (MgO)n sites solvated in a faujasite zeolitecitations
- 2018Structure and Host–Guest Interactions of Perylene–Diimide Dyes in Zeolite L Nanochannelscitations
- 2017Core-Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffractioncitations
- 2014Evolution and reversibility of host/guest interactions with temperature changes in a methyl red@palygorskite polyfunctional hybrid nanocompositecitations
- 2012Evolution of host/guest interactions with heating in a palygorskite/methyl red (Maya Red) hybrid composite
- 2012Monolithic nanoporous-crystalline aerogels based on PPOcitations
- 2011Crystal structure refinement of a sepiolite/indigo Maya Blue pigment using molecular modelling and synchrotron diffractioncitations
- 2011Nanoporous crystalline phases of poly(2,6-dimethyl-1,4-phenylene)oxidecitations
- 2011Combined study of structural properties of metal-organic frameworks changing organic linkers and metal centers
- 2011Aerogels and polymorphism of isotactic poly(4-methyl-pentene-1)citations
- 2011Structure and thermodynamic properties of the NaMgH3 perovskitecitations
- 2011Structure-activity relationships of simple molecules adsorbed on MOF materials: in situ experiments vs. theory
- 2010Hydrogen adsorption by δ and ε crystalline phases of syndiotactic polystyrene aerogelscitations
- 2010Storage of hydrogen as a guest of a nanoporous polymeric crystalline phasecitations
- 2010Hydrogen adsorption by delta and epsilon crystalline phases of syndiotactic polystirene aerogelscitations
- 2009CO adsorption on CPO-27-Ni coordination polymer: spectroscopic features and interaction energycitations
- 2009CO adsorption on cpo-27-ni coordination polymercitations
- 2008Oriented TiO2 nanostructured pillar arrayscitations
- 2008Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NOcitations
Places of action
Organizations | Location | People |
---|
article
Crystal structure refinement of a sepiolite/indigo Maya Blue pigment using molecular modelling and synchrotron diffraction
Abstract
<p>Maya Blue is an artificial pigment used in Pre-Columbian America, renowned for its chemical stability. The pigment can be considered a precursor of modern inclusion compounds as a hosting microporous clay (palygorskite or sepiolite) shelters the guest indigo dye (≤2 wt%) within its micro-channels. While most papers on Maya Blue are focused on the interaction between indigo and palygorskite, this study describes the pigment structural features when sepiolite is the host structure. Synchrotron X-ray powder diffraction patterns were collected on both pristine sepiolite and sepiolite + indigo (2 wt%) pigment. The pigment structure was investigated with the Rietveld method, basing on both molecular mechanics and the refined structure of sepiolite. The evidence obtained shows that: (i) indigo molecules, encapsulated within the micro-tunnels, stay close to a TOT strip in order to receive H-bonds from the structural OH<sub>2</sub>; (ii) there is no evidence for direct metal-oxygen bonds between the sepiolite Mg and the indigo C=O groups, as the applied heating (≤190 °C) does not remove structural OH<sub>2</sub>; (iii) the indigo molecule is affected by 4-fold disorder, as it occupies only one of four partially superposed equivalent sites; (iv) indigo and the zeolitic H <sub>2</sub>O compete to occupy the channels; refined occupancies showed that the dye fills 27 vol% of the channels whereas 73 vol% is occupied by H <sub>2</sub>O. Calculated indigo weight %(1.9) is in close agreement with experimental data; (v) indigo encapsulation modifies zeolitic H<sub>2</sub>O sites, increasing the number and strength of mutual hydrogen bonds; (vi) difference-Fourier maps computed removing indigo contribution confirmed the position of the molecule inside the channels.</p>