People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Steele, Julian
KU Leuven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cellscitations
- 2023How to GIWAXS: Grazing Incidence Wide Angle X‐Ray Scattering Applied to Metal Halide Perovskite Thin Filmscitations
- 2022An embedded interfacial network stabilizes inorganic CsPbI3 perovskite thin filmscitations
- 2020It's a trap! On the nature of localised states and charge trapping in lead halide perovskitescitations
- 2019Indirect tail states formation by thermal-induced polar fluctuations in halide perovskitescitations
Places of action
Organizations | Location | People |
---|
article
Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells
Abstract
<jats:p>Silicon solar cells are approaching their theoretical efficiency limit of 29%. This limitation can be exceeded with advanced device architectures, where two or more solar cells are stacked to improve the harvesting of solar energy. In this work, we devise a tandem device with a perovskite layer conformally coated on a silicon bottom cell featuring micrometric pyramids—the industry standard—to improve its photocurrent. Using an additive in the processing sequence, we regulate the perovskite crystallization process and alleviate recombination losses occurring at the perovskite top surface interfacing the electron-selective contact [buckminsterfullerene (C<jats:sub>60</jats:sub>)]. We demonstrate a device with an active area of 1.17 square centimeters, reaching a certified power conversion efficiency of 31.25%.</jats:p>