Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wang, Hsien-Hau

  • Google
  • 1
  • 12
  • 170

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte170citations

Places of action

Chart of shared publication
Ngo, Anh T.
1 / 2 shared
Yu, Lei
1 / 4 shared
Esmaeilirad, Mohammadreza
1 / 1 shared
Amine, Khalil
1 / 4 shared
Amine, Rachid
1 / 3 shared
Curtiss, Larry
1 / 3 shared
Kondori, Alireza
1 / 1 shared
Shan, Nannan
1 / 2 shared
Liu, Tongchao
1 / 1 shared
Saray, Mahmoud Tamadoni
1 / 1 shared
Redfern, Paul
1 / 1 shared
Harzandi, Ahmad Mosen
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ngo, Anh T.
  • Yu, Lei
  • Esmaeilirad, Mohammadreza
  • Amine, Khalil
  • Amine, Rachid
  • Curtiss, Larry
  • Kondori, Alireza
  • Shan, Nannan
  • Liu, Tongchao
  • Saray, Mahmoud Tamadoni
  • Redfern, Paul
  • Harzandi, Ahmad Mosen
OrganizationsLocationPeople

article

A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte

  • Wang, Hsien-Hau
  • Ngo, Anh T.
  • Yu, Lei
  • Esmaeilirad, Mohammadreza
  • Amine, Khalil
  • Amine, Rachid
  • Curtiss, Larry
  • Kondori, Alireza
  • Shan, Nannan
  • Liu, Tongchao
  • Saray, Mahmoud Tamadoni
  • Redfern, Paul
  • Harzandi, Ahmad Mosen
Abstract

<jats:p>A lithium-air battery based on lithium oxide (Li<jats:sub>2</jats:sub>O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO<jats:sub>2</jats:sub>) and lithium peroxide (Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>), respectively. By using a composite polymer electrolyte based on Li<jats:sub>10</jats:sub>GeP<jats:sub>2</jats:sub>S<jats:sub>12</jats:sub>nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li<jats:sub>2</jats:sub>O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion–electron-conducting discharge product and its interface with air.</jats:p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • polymer
  • energy density
  • composite
  • Lithium