Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rao, Ziyuan

  • Google
  • 6
  • 40
  • 622

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Machine learning–enabled high-entropy alloy discovery392citations
  • 2021Breaking the continuity of the Al$_2$O$_3$ oxide scale by additions of Cr in Co-Al-W-based superalloys15citations
  • 2021Beyond Solid Solution High-Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition84citations
  • 2020Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study37citations
  • 2020Role of magnetic ordering for the design of quinary TWIP-TRIP high entropy alloys33citations
  • 2019Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design61citations

Places of action

Chart of shared publication
Klaver, T. P. C.
1 / 8 shared
Wei, Ye
1 / 2 shared
Raabe, Dierk
5 / 523 shared
Kwiatkowski Da Silva, Alisson
1 / 4 shared
Ponge, Dirk
4 / 49 shared
Tung, Po-Yen
1 / 2 shared
Körmann, Fritz
1 / 7 shared
Ferrari, Alberto
1 / 5 shared
Li, Zhiming
5 / 11 shared
Gutfleisch, Oliver
2 / 54 shared
Xie, Ruiwen
1 / 2 shared
Thoudden Sukumar, Prithiv
1 / 2 shared
Zhang, Hongbin
1 / 10 shared
Neugebauer, Joerg
1 / 9 shared
Bauer, Stefan
1 / 4 shared
Pyczak, Florian
1 / 48 shared
Liang, Zhida
1 / 3 shared
Göken, Mathias
1 / 350 shared
Neumeier, Steffen
1 / 118 shared
Stark, Andreas
1 / 148 shared
Gault, Baptiste
1 / 45 shared
Liu, Chang
1 / 6 shared
Da Silva, Alisson Kwiatkowski
1 / 2 shared
Farle, Michael
1 / 13 shared
Neugebauer, Jörg
3 / 35 shared
Spasova, Marina
1 / 3 shared
Zhou, Xuyang
1 / 12 shared
Körmann, F. H. W.
4 / 22 shared
Dutta, B.
3 / 13 shared
Wiedwald, Ulf
1 / 11 shared
Lu, Wenjun
1 / 9 shared
Schäfer, Lukas
1 / 5 shared
He, Junyang
1 / 7 shared
Li, Linlin
1 / 2 shared
Stephenson, Leigh
1 / 5 shared
Skokov, Konstantin
1 / 10 shared
Ikeda, Yuji
2 / 22 shared
Wu, Xiaoxiang
1 / 2 shared
Friák, Martin
1 / 5 shared
Schneeweiss, Oldřich
1 / 1 shared
Chart of publication period
2022
2021
2020
2019

Co-Authors (by relevance)

  • Klaver, T. P. C.
  • Wei, Ye
  • Raabe, Dierk
  • Kwiatkowski Da Silva, Alisson
  • Ponge, Dirk
  • Tung, Po-Yen
  • Körmann, Fritz
  • Ferrari, Alberto
  • Li, Zhiming
  • Gutfleisch, Oliver
  • Xie, Ruiwen
  • Thoudden Sukumar, Prithiv
  • Zhang, Hongbin
  • Neugebauer, Joerg
  • Bauer, Stefan
  • Pyczak, Florian
  • Liang, Zhida
  • Göken, Mathias
  • Neumeier, Steffen
  • Stark, Andreas
  • Gault, Baptiste
  • Liu, Chang
  • Da Silva, Alisson Kwiatkowski
  • Farle, Michael
  • Neugebauer, Jörg
  • Spasova, Marina
  • Zhou, Xuyang
  • Körmann, F. H. W.
  • Dutta, B.
  • Wiedwald, Ulf
  • Lu, Wenjun
  • Schäfer, Lukas
  • He, Junyang
  • Li, Linlin
  • Stephenson, Leigh
  • Skokov, Konstantin
  • Ikeda, Yuji
  • Wu, Xiaoxiang
  • Friák, Martin
  • Schneeweiss, Oldřich
OrganizationsLocationPeople

article

Machine learning–enabled high-entropy alloy discovery

  • Klaver, T. P. C.
  • Wei, Ye
  • Raabe, Dierk
  • Kwiatkowski Da Silva, Alisson
  • Ponge, Dirk
  • Tung, Po-Yen
  • Rao, Ziyuan
  • Körmann, Fritz
  • Ferrari, Alberto
  • Li, Zhiming
  • Gutfleisch, Oliver
  • Xie, Ruiwen
  • Thoudden Sukumar, Prithiv
  • Zhang, Hongbin
  • Neugebauer, Joerg
  • Bauer, Stefan
Abstract

<jats:p>High-entropy alloys are solid solutions of multiple principal elements that are capable of reaching composition and property regimes inaccessible for dilute materials. Discovering those with valuable properties, however, too often relies on serendipity, because thermodynamic alloy design rules alone often fail in high-dimensional composition spaces. We propose an active learning strategy to accelerate the design of high-entropy Invar alloys in a practically infinite compositional space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with density-functional theory, thermodynamic calculations, and experiments. After processing and characterizing 17 new alloys out of millions of possible compositions, we identified two high-entropy Invar alloys with extremely low thermal expansion coefficients around 2 × 10<jats:sup>−6</jats:sup>per degree kelvin at 300 kelvin. We believe this to be a suitable pathway for the fast and automated discovery of high-entropy alloys with optimal thermal, magnetic, and electrical properties.</jats:p>

Topics
  • density
  • theory
  • experiment
  • thermal expansion
  • machine learning