People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kirchartz, Thomas
Forschungszentrum Jülich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024High‐Bandgap Perovskites for Efficient Indoor Light Harvestingcitations
- 2023Characterizing the influence of charge extraction layers on the performance of triple‐cation perovskite solar cellscitations
- 2022Tantalum Oxide as an Efficient Alternative Electron Transporting Layer for Perovskite Solar Cellscitations
- 2021Comment on “Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells”citations
- 2021Pathways toward 30% Efficient Single‐Junction Perovskite Solar Cells and the Role of Mobile Ionscitations
- 2021Roadmap on organic-inorganic hybrid perovskite semiconductors and devicescitations
- 2021Pathways toward 30% efficient single-junction perovskite solar cells and the role of mobile ionscitations
- 2020Photoluminescence-based characterization of halide perovskites for photovoltaicscitations
- 2020Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskitecitations
- 2020Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskitecitations
- 2020How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%citations
- 2019Charge-Carrier Recombination in Halide Perovskitescitations
- 2019Charge-Carrier Recombination in Halide Perovskites.
- 2019The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cellscitations
- 2019Highly Compact TiO<sub>2</sub> Films by Spray Pyrolysis and Application in Perovskite Solar Cellscitations
- 2019Fermi-level pinning in methylammonium lead iodide perovskitescitations
- 2018Spin-coated planar Sb<sub>2</sub>S<sub>3</sub> hybrid solar cells approaching 5% efficiencycitations
- 2016Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversioncitations
- 2016Classification of solar cells according to mechanisms of charge separation and charge collectioncitations
- 2013Influence of crystallinity and energetics on charge separation in polymer–inorganic nanocomposite films for solar cellscitations
Places of action
Organizations | Location | People |
---|
article
Comment on “Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells”
Abstract
<jats:p>Ni<jats:italic>et al</jats:italic>. (Research Articles, 20 March 2020, p. 1352) report bulk trap densities of 10<jats:sup>11</jats:sup>cm<jats:sup>–3</jats:sup>and an increase in interfacial trap densities by one to four orders of magnitude from drive-level capacitance profiling of lead halide perovskites. From electrostatic arguments, we show that the results are not trap densities but are a consequence of the geometrical capacitance and charge injection into the perovskite layer.</jats:p>