Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thorpe, Steven J.

  • Google
  • 1
  • 15
  • 1198

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020CO2 electrolysis to multicarbon products at activities greater than 1 A cm−21198citations

Places of action

Chart of shared publication
Sargent, Edward H.
1 / 21 shared
Nam, Dae-Hyun
1 / 3 shared
Richter, Lee J.
1 / 5 shared
Li, Fengwang
1 / 5 shared
Ozden, Adnan
1 / 3 shared
Arquer, F. Pelayo García De
1 / 4 shared
Sinton, David
1 / 4 shared
Li, Yuguang C.
1 / 2 shared
Wicks, Joshua
1 / 3 shared
Dinh, Cao-Thang
1 / 1 shared
Edwards, Jonathan
1 / 1 shared
Mccallum, Christopher
1 / 2 shared
Kirmani, Ahmad R.
1 / 1 shared
Gabardo, Christine
1 / 1 shared
Seifitokaldani, Ali
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Sargent, Edward H.
  • Nam, Dae-Hyun
  • Richter, Lee J.
  • Li, Fengwang
  • Ozden, Adnan
  • Arquer, F. Pelayo García De
  • Sinton, David
  • Li, Yuguang C.
  • Wicks, Joshua
  • Dinh, Cao-Thang
  • Edwards, Jonathan
  • Mccallum, Christopher
  • Kirmani, Ahmad R.
  • Gabardo, Christine
  • Seifitokaldani, Ali
OrganizationsLocationPeople

article

CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2

  • Sargent, Edward H.
  • Nam, Dae-Hyun
  • Richter, Lee J.
  • Li, Fengwang
  • Ozden, Adnan
  • Arquer, F. Pelayo García De
  • Thorpe, Steven J.
  • Sinton, David
  • Li, Yuguang C.
  • Wicks, Joshua
  • Dinh, Cao-Thang
  • Edwards, Jonathan
  • Mccallum, Christopher
  • Kirmani, Ahmad R.
  • Gabardo, Christine
  • Seifitokaldani, Ali
Abstract

Electrolysis offers an attractive route to upgrade greenhouse gases such as carbon dioxide (CO<sub>2</sub>) to valuable fuels and feedstocks; however, productivity is often limited by gas diffusion through a liquid electrolyte to the surface of the catalyst. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. The CIBH comprises a metal and a superfine ionomer layer with hydrophobic and hydrophilic functionalities that extend gas and ion transport from tens of nanometers to the micrometer scale. By applying this design strategy, we achieved CO<sub>2</sub> electroreduction on copper in 7 M potassium hydroxide electrolyte (pH ≈ 15) with an ethylene partial current density of 1.3 amperes per square centimeter at 45% cathodic energy efficiency.

Topics
  • density
  • impedance spectroscopy
  • surface
  • Carbon
  • Potassium
  • copper
  • current density