People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akola, Jaakko
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Deposited PtGe clusters as active and durable catalysts for CO oxidationcitations
- 2024Graphite nucleation on (Al, Si, Mg)-nitrides : Elucidating the chemical interactions and turbostratic structures in spheroidal graphite cast ironscitations
- 2024Graphite nucleation on (Al, Si, Mg)-nitridescitations
- 2023Machine-learned model Hamiltonian and strength of spin-orbit interaction in strained Mg2X (X = Si, Ge, Sn, Pb)citations
- 2022Machine-learned model Hamiltonian and strength of spin-orbit interaction in strained Mg2X (X = Si, Ge, Sn, Pb)citations
- 2021Comparison of optical response from DFT random phase approximation and a low-energy effective modelcitations
- 2021Comparison of optical response from DFT random phase approximation and a low-energy effective model : Strained phosphorenecitations
- 2020Density functional simulations of pressurized Mg-Zn and Al-Zn alloyscitations
- 2020Strain-engineered widely tunable perfect absorption angle in black phosphorus from first principlescitations
- 2020Synergistic Computational-Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenationcitations
- 2020Atomistic simulations of early stage clusters in AlMg alloyscitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Ultrahigh-pressure form of Si O2 glass with dense pyrite-type crystalline homologycitations
- 2019Atomistic simulations of early stage clusters in Al–Mg alloyscitations
- 2018Atomistic simulations of early stage clusters in AlMg alloyscitations
- 2016Tuning electronic properties of graphene heterostructures by amorphous-to-crystalline phase transitionscitations
- 2015Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional studycitations
- 2015The Prototype Phase Change Material Ge2Sb2Te5citations
- 2003Close packing of clusterscitations
- 2001Metallic evolution of small magnesium clusters
Places of action
Organizations | Location | People |
---|
article
Highly ductile amorphous oxide at room temperature and high strain rate
Abstract
<p>Oxide glasses are an integral part of the modern world, but their usefulness can be limited by their characteristic brittleness at room temperature. We show that amorphous aluminum oxide can permanently deform without fracture at room temperature and high strain rate by a viscous creep mechanism. These thin-films can reach flow stress at room temperature and can flow plastically up to a total elongation of 100%, provided that the material is dense and free of geometrical flaws. Our study demonstrates a much higher ductility for an amorphous oxide at low temperature than previous observations. This discovery may facilitate the realization of damage-tolerant glass materials that contribute in new ways, with the potential to improve the mechanical resistance and reliability of applications such as electronic devices and batteries.</p>