Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Basile, Leonardo

  • Google
  • 1
  • 9
  • 515

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges515citations

Places of action

Chart of shared publication
Idrobo, Juan Carlos
1 / 7 shared
Gu, Gong
1 / 3 shared
Siegel, David A.
1 / 1 shared
Park, Jewook
1 / 1 shared
Clark, Kendal W.
1 / 1 shared
Deng, Wan
1 / 1 shared
Liu, Lei
1 / 4 shared
Mccarty, Kevin F.
1 / 2 shared
Li, An-Ping
1 / 2 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Idrobo, Juan Carlos
  • Gu, Gong
  • Siegel, David A.
  • Park, Jewook
  • Clark, Kendal W.
  • Deng, Wan
  • Liu, Lei
  • Mccarty, Kevin F.
  • Li, An-Ping
OrganizationsLocationPeople

article

Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges

  • Idrobo, Juan Carlos
  • Gu, Gong
  • Siegel, David A.
  • Park, Jewook
  • Clark, Kendal W.
  • Basile, Leonardo
  • Deng, Wan
  • Liu, Lei
  • Mccarty, Kevin F.
  • Li, An-Ping
Abstract

<jats:title>Heteroepitaxy Writ Thin</jats:title><jats:p>A common method for creating a thin single-crystal layer of a semiconductor for use in an electronic device is heteroepitaxy—growing the layer on the face of a single crystal of a different material that acts as a template for assembly.<jats:bold>Liu<jats:italic>et al.</jats:italic></jats:bold>(p.<jats:related-article xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="doi" issue="6167" page="163" related-article-type="in-this-issue" vol="343" xlink:href="10.1126/science.1246137">163</jats:related-article>) now describe a similar process in which the edge of a graphene layer that was grown on a copper surface directs the assembly of a monolayer of hexagonal boron nitride. The boron nitride grew from inside edge of holes created in the graphene layer. The interface and the relative orientation of the two layers were determined by a variety of scanning microscopy and surface diffraction techniques.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • semiconductor
  • nitride
  • copper
  • Boron
  • two-dimensional
  • microscopy