People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Greve, Kristiaan
KU Leuven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor
Abstract
High-temperature superconductivity often emerges in the proximity of a symmetry-breaking ground state. For superconducting iron arsenides, in addition to the antiferromagnetic ground state, a small structural distortion breaks the crystal's C(4 )rotational symmetry in the underdoped part of the phase diagram. We reveal that the representative iron arsenide Ba(Fe(1)(-x)Co(x))(2)As(2) develops a large electronic anisotropy at this transition via measurements of the in-plane resistivity of detwinned single crystals, with the resistivity along the shorter b axis rho(b) being greater than rho(a). The anisotropy reaches a maximum value of ~2 for compositions in the neighborhood of the beginning of the superconducting dome. For temperatures well above the structural transition, uniaxial stress induces a resistivity anisotropy, indicating a substantial nematic susceptibility.