Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

De Greve, Kristiaan

  • Google
  • 2
  • 6
  • 726

KU Leuven

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019High resolution imaging of reconstructed domains and moire patterns in functional van der Waals heterostructure devicescitations
  • 2010In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor726citations

Places of action

Chart of shared publication
Analytis, James G.
1 / 2 shared
Mcmahon, Peter L.
1 / 2 shared
Chu, Jiun-Haw
1 / 2 shared
Islam, Zahirul
1 / 1 shared
Yamamoto, Yoshihisa
1 / 3 shared
Fisher, Ian R.
1 / 4 shared
Chart of publication period
2019
2010

Co-Authors (by relevance)

  • Analytis, James G.
  • Mcmahon, Peter L.
  • Chu, Jiun-Haw
  • Islam, Zahirul
  • Yamamoto, Yoshihisa
  • Fisher, Ian R.
OrganizationsLocationPeople

article

In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor

  • De Greve, Kristiaan
  • Analytis, James G.
  • Mcmahon, Peter L.
  • Chu, Jiun-Haw
  • Islam, Zahirul
  • Yamamoto, Yoshihisa
  • Fisher, Ian R.
Abstract

High-temperature superconductivity often emerges in the proximity of a symmetry-breaking ground state. For superconducting iron arsenides, in addition to the antiferromagnetic ground state, a small structural distortion breaks the crystal's C(4 )rotational symmetry in the underdoped part of the phase diagram. We reveal that the representative iron arsenide Ba(Fe(1)(-x)Co(x))(2)As(2) develops a large electronic anisotropy at this transition via measurements of the in-plane resistivity of detwinned single crystals, with the resistivity along the shorter b axis rho(b) being greater than rho(a). The anisotropy reaches a maximum value of ~2 for compositions in the neighborhood of the beginning of the superconducting dome. For temperatures well above the structural transition, uniaxial stress induces a resistivity anisotropy, indicating a substantial nematic susceptibility.

Topics
  • single crystal
  • resistivity
  • phase
  • iron
  • susceptibility
  • phase diagram
  • superconductivity
  • superconductivity