People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sahabudeen, Hafeesudeen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Mechanistic insights into the deformation and degradation of a 2D metal organic framework
- 2021Multiscale Modeling Strategy of 2D Covalent Organic Frameworks Confined at an Air–Water Interfacecitations
- 2020Near–atomic-scale observation ofgrain boundaries inalayer-stacked two-dimensional polymercitations
- 2020Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymercitations
- 2020Two-Dimensional Boronate Ester Covalent Organic Framework Thin Films with Large Single Crystalline Domains for a Neuromorphic Memory Devicecitations
- 2020Highly crystalline and semiconducting imine‐based two‐dimensional polymers enabled by interfacial synthesis
Places of action
Organizations | Location | People |
---|
article
Near–atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer
Abstract
<jats:p>Two-dimensional (2D) polymers hold great promise in the rational materials design tailored for next-generation applications. However, little is known about the grain boundaries in 2D polymers, not to mention their formation mechanisms and potential influences on the material’s functionalities. Using aberration-corrected high-resolution transmission electron microscopy, we present a direct observation of the grain boundaries in a layer-stacked 2D polyimine with a resolution of 2.3 Å, shedding light on their formation mechanisms. We found that the polyimine growth followed a “birth-and-spread” mechanism. Antiphase boundaries implemented a self-correction to the missing-linker and missing-node defects, and tilt boundaries were formed via grain coalescence. Notably, we identified grain boundary reconstructions featuring closed rings at tilt boundaries. Quantum mechanical calculations revealed that boundary reconstruction is energetically allowed and can be generalized into different 2D polymer systems. We envisage that these results may open up the opportunity for future investigations on defect-property correlations in 2D polymers.</jats:p>