People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Block, Alexander
Institut Català de Nanociència i Nanotecnologia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Observation of Negative Effective Thermal Diffusion in Gold Filmscitations
- 2023Observation of Negative Effective Thermal Diffusion in Gold Filmscitations
- 2022Unraveling Heat Transport and Dissipation in Suspended MoSe2 from Bulk to Monolayercitations
- 2022Unraveling Heat Transport and Dissipation in Suspended MoSe2 from Bulk to Monolayer
- 2022Unraveling heat transport and dissipation in suspended MoSe2 from bulk to monolayercitations
- 2019Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopycitations
Places of action
Organizations | Location | People |
---|
article
Tracking ultrafast hot-electron diffusion in space and time by ultrafast thermomodulation microscopy
Abstract
<jats:p>The ultrafast response of metals to light is governed by intriguing nonequilibrium dynamics involving the interplay of excited electrons and phonons. The coupling between them leads to nonlinear diffusion behavior on ultrashort time scales. Here, we use scanning ultrafast thermomodulation microscopy to image the spatiotemporal hot-electron diffusion in thin gold films. By tracking local transient reflectivity with 20-nm spatial precision and 0.25-ps temporal resolution, we reveal two distinct diffusion regimes: an initial rapid diffusion during the first few picoseconds, followed by about 100-fold slower diffusion at longer times. We find a slower initial diffusion than previously predicted for purely electronic diffusion. We develop a comprehensive three-dimensional model based on a two-temperature model and evaluation of the thermo-optical response, taking into account the delaying effect of electron-phonon coupling. Our simulations describe well the observed diffusion dynamics and let us identify the two diffusion regimes as hot-electron and phonon-limited thermal diffusion, respectively.</jats:p>