People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lawrence, Robert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industrycitations
- 2019Development of novel building composites based on hemp and multi-functional silica matrixcitations
- 2018Cell wall microstructure, pore size distribution and absolute density of hemp shivcitations
- 2018Comparative moisture and heat sorption properties of fibre and shiv derived from hemp and flaxcitations
- 2018The influence of constituents on the properties of the bio-aggregate composite hemp-limecitations
- 2018Modification of Hemp Shiv Properties using Water-repellent Sol-gel Coatingscitations
- 2017Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wellscitations
- 2017Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wellscitations
- 2017Physical characterisation of hemp shiv: Cell wall structure and porosity
- 2013The potential for using geopolymer concrete in the UKcitations
- 2009The compressive strength of modern earth masonry
Places of action
Organizations | Location | People |
---|
article
Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells
Abstract
The outstanding excitonic properties, including photoluminescence quantum yield (ηPL), of individual, quantum-confined semiconductor nanoparticles are often significantly quenched upon aggregation, representing the main obstacle toward scalable photonic devices. We report aggregation-induced emission phenomena in lamellar solids containing layer-controlled colloidal quantum wells (QWs) of hybrid organic-inorganic lead bromide perovskites, resulting in anomalously high solid-state ηPL of up to 94%. Upon forming the QW solids, we observe an inverse correlation between exciton lifetime and ηPL, distinct from that in typical quantum dot solid systems. Our multiscale theoretical analysis reveals that, in a lamellar solid, the collective motion of the surface organic cations is more restricted to orient along the [100] direction, thereby inducing a more direct bandgap that facilitates radiative recombination. Using the QW solids, we demonstrate ultrapure green emission by completely downconverting a blue gallium nitride light-emitting diode at room temperature, with a luminous efficacy higher than 90 lumen W−1 at 5000 cd m−2, which has never been reached in any nanomaterial assemblies by far.