Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fraj, Ibtissem

  • Google
  • 1
  • 14
  • 93

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures93citations

Places of action

Chart of shared publication
Benkouider, Abdelmalek
1 / 7 shared
Favre, Luc
1 / 25 shared
Ronda, Antoine
1 / 9 shared
Backofen, Rainer
1 / 8 shared
Naffouti, Meher
1 / 6 shared
Grosso, David
1 / 29 shared
Bottein, Thomas
1 / 3 shared
Voigt, Axel
1 / 20 shared
Bollani, Monica
1 / 18 shared
Abbarchi, Marco
1 / 17 shared
Salvalaglio, Marco
1 / 31 shared
David, Thomas
1 / 15 shared
Lodari, Mario
1 / 4 shared
Berbezier, Isabelle
1 / 26 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Benkouider, Abdelmalek
  • Favre, Luc
  • Ronda, Antoine
  • Backofen, Rainer
  • Naffouti, Meher
  • Grosso, David
  • Bottein, Thomas
  • Voigt, Axel
  • Bollani, Monica
  • Abbarchi, Marco
  • Salvalaglio, Marco
  • David, Thomas
  • Lodari, Mario
  • Berbezier, Isabelle
OrganizationsLocationPeople

article

Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures

  • Benkouider, Abdelmalek
  • Favre, Luc
  • Ronda, Antoine
  • Backofen, Rainer
  • Naffouti, Meher
  • Grosso, David
  • Bottein, Thomas
  • Voigt, Axel
  • Bollani, Monica
  • Abbarchi, Marco
  • Fraj, Ibtissem
  • Salvalaglio, Marco
  • David, Thomas
  • Lodari, Mario
  • Berbezier, Isabelle
Abstract

<p>Dewetting is a ubiquitous phenomenon in nature; many different thin films of organic and inorganic substances (such as liquids, polymers, metals, and semiconductors) share this shape instability driven by surface tension and mass transport. Via templated solid-state dewetting, we frame complex nanoarchitectures of monocrystalline silicon on insulator with unprecedented precision and reproducibility over large scales. Phase-field simulations reveal the dominant role of surface diffusion as a driving force for dewetting and provide a predictive tool to further engineer this hybrid top-down/bottom-up self-assembly method. Our results demonstrate that patches of thin monocrystalline films of metals and semiconductors share the same dewetting dynamics. We also prove the potential of our method by fabricating nanotransfer molding of metal oxide xerogels on silicon and glass substrates. This method allows the novel possibility of transferring these Si-based patterns on different materials, which do not usually undergo dewetting, offering great potential also for microfluidic or sensing applications.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • phase
  • thin film
  • simulation
  • glass
  • semiconductor
  • glass
  • Silicon
  • self-assembly