Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guha, Suchi

  • Google
  • 1
  • 16
  • 398

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Understanding charge transport in lead iodide perovskite thin-film field-effect transistors398citations

Places of action

Chart of shared publication
Yang, Bingyan
1 / 1 shared
Goedel, Karl
1 / 1 shared
Giesbrecht, Nadja
1 / 8 shared
Nair, Bhaskaran
1 / 2 shared
Mcneill, Cr
1 / 7 shared
Moya, Xavier
1 / 3 shared
Thomas, Tudor H.
1 / 3 shared
Gann, Eliot
1 / 22 shared
Friend, Richard, H.
1 / 549 shared
Sadhanala, Aditya
1 / 29 shared
Sirringhaus, Henning
1 / 48 shared
Senanayak, Satyaprasad P.
1 / 11 shared
Docampo, Pablo
1 / 18 shared
Senanayak, Sp
1 / 9 shared
Huang, Wenchao
1 / 8 shared
Friend, Richard H.
1 / 48 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Yang, Bingyan
  • Goedel, Karl
  • Giesbrecht, Nadja
  • Nair, Bhaskaran
  • Mcneill, Cr
  • Moya, Xavier
  • Thomas, Tudor H.
  • Gann, Eliot
  • Friend, Richard, H.
  • Sadhanala, Aditya
  • Sirringhaus, Henning
  • Senanayak, Satyaprasad P.
  • Docampo, Pablo
  • Senanayak, Sp
  • Huang, Wenchao
  • Friend, Richard H.
OrganizationsLocationPeople

article

Understanding charge transport in lead iodide perovskite thin-film field-effect transistors

  • Yang, Bingyan
  • Guha, Suchi
  • Goedel, Karl
  • Giesbrecht, Nadja
  • Nair, Bhaskaran
  • Mcneill, Cr
  • Moya, Xavier
  • Thomas, Tudor H.
  • Gann, Eliot
  • Friend, Richard, H.
  • Sadhanala, Aditya
  • Sirringhaus, Henning
  • Senanayak, Satyaprasad P.
  • Docampo, Pablo
  • Senanayak, Sp
  • Huang, Wenchao
  • Friend, Richard H.
Abstract

<p>Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI<sub>3</sub>). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (m<sub>FET</sub>) of 0.5 cm<sup>2</sup>/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA<sup>+</sup> cations, and thermal vibrations of the lead halide inorganic cages.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • grain
  • mobility
  • thin film
  • semiconductor
  • field-effect transistor method
  • small angle x-ray scattering
  • point defect