Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jeglič, Peter

  • Google
  • 3
  • 13
  • 119

Jožef Stefan Institute

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Fulleride superconductivity tuned by elastic strain due to cation compositional disorder2citations
  • 2015Optimized unconventional superconductivity in a molecular Jahn-Teller metal117citations
  • 2015Processing-property relationship for solid-state synthesized CuAlO2 ceramiccitations

Places of action

Chart of shared publication
Kubota, Yoshiki
1 / 2 shared
Colman, Ross H.
1 / 2 shared
Prassides, Kosmas
1 / 5 shared
Kato, Kenichi
1 / 2 shared
Arcon, Denis
1 / 4 shared
Takabayashi, Y.
1 / 1 shared
Ohishi, Yasuo
1 / 5 shared
Okur, Esma
1 / 1 shared
Arčon, Denis
1 / 3 shared
Malič, Barbara
1 / 20 shared
Deluca, Marco
1 / 20 shared
Vojisavljević, Katarina
1 / 16 shared
Gartner, Mariuca
1 / 1 shared
Chart of publication period
2024
2015

Co-Authors (by relevance)

  • Kubota, Yoshiki
  • Colman, Ross H.
  • Prassides, Kosmas
  • Kato, Kenichi
  • Arcon, Denis
  • Takabayashi, Y.
  • Ohishi, Yasuo
  • Okur, Esma
  • Arčon, Denis
  • Malič, Barbara
  • Deluca, Marco
  • Vojisavljević, Katarina
  • Gartner, Mariuca
OrganizationsLocationPeople

article

Optimized unconventional superconductivity in a molecular Jahn-Teller metal

  • Jeglič, Peter
Abstract

<jats:p>Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above <jats:italic>T</jats:italic><jats:sub>c</jats:sub> is a major challenge for all unconventional superconductors. The molecular A<jats:sub>3</jats:sub>C<jats:sub>60</jats:sub> fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C<jats:sub>60</jats:sub><jats:sup>3–</jats:sup> electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of <jats:italic>T</jats:italic><jats:sub>c</jats:sub> with interfulleride separation, demonstrating molecular electronic structure control of superconductivity.</jats:p>

Topics
  • impedance spectroscopy
  • superconductivity
  • superconductivity