People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaschta, Joachim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Characterization of the temperature and frequency dependency of the complex Poisson’s ratio using a novel combined torsional-axial rheometercitations
- 2023Investigation and characterization of the additive manufacturing of polycaprolactone/bioactive glass hybrid scaffolds for bone tissue engineering via material extrusion processingcitations
- 2022Abrasion-Induced Acceleration of Melt Crystallisation of Wet Comminuted Polybutylene Terephthalate (PBT)citations
- 2020On the Determination of the Enthalpy of Fusion of α‐Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X‐Ray Diffraction, and Fourier‐Transform Infrared Spectroscopy: An Old Story Revisitedcitations
- 2019Polymer-Functionalised Nanograins of Mg-Doped Amorphous Calcium Carbonate via a Flow-Chemistry Approachcitations
Places of action
Organizations | Location | People |
---|
article
Characterization of the temperature and frequency dependency of the complex Poisson’s ratio using a novel combined torsional-axial rheometer
Abstract
<jats:p>This study discusses the feasibility of using a combined torsional-axial rheometer to indirectly measure the complex Poisson’s ratio based on shear and Young’s modulus. For this purpose, isothermal frequency sweeps in torsion and extension are performed sequentially on the same cylindrical specimen and under the same environmental conditions. The method is tested on two amorphous polymers, a semicrystalline polymer, a polymer blend, and a copolymer. The article includes an extensive literature review and an uncertainty assessment of the method to provide a basis for subsequent data comparison with existing research. The experimental data show a monotonic increase in the complex Poisson’s ratio up to 0.5 as the temperature approaches α-relaxation for all samples, except for the amorphous polymer. The latter shows a local minimum in the complex Poisson’s ratio observed near α-relaxation, which disappears after thermal annealing of the sample above the α-relaxation temperature. The real and imaginary parts of the complex Poisson’s ratio are additionally determined by evaluating both phase shift angles from torsional and extensional measurements. All polymers show a certain offset between the torsional and extensional phase shift angles in the glassy state, which gradually decreases as the temperature approaches α-relaxation. The complex Poisson’s ratio results are in good agreement with the literature data obtained by existing methods. This confirms that the method is applicable to polymers up to α-relaxation temperatures with significant time savings due to the nondestructive approach. This is of particular interest, given the limited availability of data in the literature.</jats:p>