Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hirschberg, Valerian

  • Google
  • 16
  • 25
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2024Fast and Scalable Synthetic Route to Densely Grafted, Branched Polystyrenes and Polydienes via Anionic Polymerization Utilizing P2VP as Branching Pointcitations
  • 2024Modeling elongational viscosity of polystyrene Pom-Pom/linear and Pom-Pom/star blendscitations
  • 2024Predicting maximum strain hardening factor in elongational flow of branched pom-pom polymers from polymer architecturecitations
  • 2024Hyperstretching in elongational flow of densely grafted comb and branch-on-branch model polystyrenescitations
  • 2024Rheology of Poly(α-olefin) Bottlebrushes: Effect of Self-Dilution by Alkane Side Chainscitations
  • 2024Modeling Elongational Rheology of Model Poly((±)-lactide) Graft Copolymer Bottlebrushescitations
  • 2024Effect of mechanical recycling on molecular structure and rheological properties of high-density polyethylene (HDPE)citations
  • 2024Modeling elongational viscosity and brittle fracture of 10 polystyrene Pom-Poms by the hierarchical molecular stress function modelcitations
  • 2023Magnesium Polymer Electrolytes Based on the Polycarbonate Poly(2-butyl-2-ethyltrimethylene-carbonate)citations
  • 2023Modeling elongational viscosity of polystyrene Pom-Pom/linear and Pom-Pom/star blendscitations
  • 2023Complex polymer topologies in blends: Shear and elongational rheology of linear/pom-pom polystyrene blends12citations
  • 2023Dynamic mechanical analysis of PA 6 under hydrothermal influences and viscoelastic material modeling9citations
  • 2023Modeling elongational viscosity and brittle fracture of 10 polystyrene Pom-Poms by the hierarchical molecular stress function modelcitations
  • 2022Comb and Branch‐on‐Branch Model Polystyrenes with Exceptionally High Strain Hardening Factor SHF > 1000 and Their Impact on Physical Foamingcitations
  • 2022Threading Polystyrene Stars: Impact of Star to POM‐POM and Barbwire Topology on Melt Rheological and Foaming Propertiescitations
  • 2021Combining mechanical and thermal surface fourier transform analysis to follow the dynamic fatigue behavior of polymerscitations

Places of action

Chart of shared publication
Kreutzer, Lukas
1 / 1 shared
Schußmann, Max G.
6 / 6 shared
Wagner, Manfred H.
7 / 21 shared
Wilhelm, Manfred
10 / 39 shared
Lyu, Shan
3 / 4 shared
Faust, Lorenz
2 / 3 shared
Abbasi, Mahdi
2 / 9 shared
Huang, Qian
1 / 25 shared
Zografos, Aristotelis
1 / 4 shared
Zhang, Jian
1 / 13 shared
Yu, Wei
1 / 2 shared
Goecke, Anika
2 / 2 shared
Rodrigue, Denis
1 / 9 shared
Orfgen, Michael
1 / 1 shared
Röpert, Marie-Christin
4 / 4 shared
Sundermann, David A.
1 / 1 shared
Park, Bumjun
1 / 2 shared
Schaefer, Jennifer L.
1 / 4 shared
Théato, Patrick
1 / 12 shared
Schußmann, Max Gerrit
1 / 1 shared
Keursten, Johannes
1 / 3 shared
Böhlke, Thomas
1 / 55 shared
Kehrer, Loredana
1 / 3 shared
Esfahani, Masood K.
1 / 1 shared
Rodrigue, D.
1 / 3 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Kreutzer, Lukas
  • Schußmann, Max G.
  • Wagner, Manfred H.
  • Wilhelm, Manfred
  • Lyu, Shan
  • Faust, Lorenz
  • Abbasi, Mahdi
  • Huang, Qian
  • Zografos, Aristotelis
  • Zhang, Jian
  • Yu, Wei
  • Goecke, Anika
  • Rodrigue, Denis
  • Orfgen, Michael
  • Röpert, Marie-Christin
  • Sundermann, David A.
  • Park, Bumjun
  • Schaefer, Jennifer L.
  • Théato, Patrick
  • Schußmann, Max Gerrit
  • Keursten, Johannes
  • Böhlke, Thomas
  • Kehrer, Loredana
  • Esfahani, Masood K.
  • Rodrigue, D.
OrganizationsLocationPeople

article

Complex polymer topologies in blends: Shear and elongational rheology of linear/pom-pom polystyrene blends

  • Hirschberg, Valerian
  • Schußmann, Max Gerrit
  • Lyu, Shan
Abstract

The shear and elongational rheology of linear and pom-pom shaped polystyrene (PS) blends was investigated experimentally and modeled using constitutive models such as the Doi–Edwards and the molecular stress function (MSF) model. The pom-pom molecule is the simplest topology to combine shear thinning with strain hardening in elongational flow. A PS pom-pom with a self-entangled backbone (M$_{w,bb}$ = 280 kg mol$^{−1}$) and 22 entangled sidearms (M$_{w,a}$ = 22 kg mol$^{−1}$) at each star was blended with two linear PS with weight average molecular weights of M$_w$ = 43 and 90 kg mol$^{−1}$ and low polydispersities (Ð < 1.05). A semilogarithmic relationship between the weight content of the pom-pom, ϕ$_{pom-pom}$, and the zero-shear viscosity was found. Whereas the pure pom-pom has in uniaxial elongational flow at T = 160 °C strain hardening factors (SHFs) of SHF ≈100, similar values can be found in blends with up to ϕ$_{pom-pom}$ = 50 wt. % in linear PS43k and PS90k. By blending only 2 wt. % pom-pom with linear PS43k, SHF = 10 can still be observed. Furthermore, above ϕ$_{pom-pom}$ = 5–10 wt. %, the uniaxial extensional behavior can be well-described with the MSF model with a single parameter set for each linear PS matrix. The results show that the relationship between shear and elongational melt behavior, i.e., zero-shear viscosity and SHF, can be uncoupled and customized tuned by blending linear and pom-pom shaped polymers and very straightforwardly predicted theoretically. This underlines also the possible application of well-designed branched polymers as additives in recycling.

Topics
  • impedance spectroscopy
  • polymer
  • melt
  • viscosity
  • molecular weight