Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ponte Castañeda, Pedro

  • Google
  • 8
  • 5
  • 432

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2022A homogenization model for the rheology and local field statistics of suspensions of particles in yield stress fluids8citations
  • 2007Variational linear comparison bounds for nonlinear composites with anisotropic phases. I. General results33citations
  • 2007Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: I-Analysis52citations
  • 2007Field statistics in nonlinear composites. II. Applications15citations
  • 2006On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: II-Application to cylindrical fibers68citations
  • 2006On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I-Theory96citations
  • 2006Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations102citations
  • 2004Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations58citations

Places of action

Chart of shared publication
Idiart, Martin, I.
1 / 2 shared
Lopez-Pamies, Oscar
4 / 7 shared
Idiart, Martin
2 / 2 shared
Moulinec, Hervé
1 / 9 shared
Suquet, Pierre
1 / 10 shared
Chart of publication period
2022
2007
2006
2004

Co-Authors (by relevance)

  • Idiart, Martin, I.
  • Lopez-Pamies, Oscar
  • Idiart, Martin
  • Moulinec, Hervé
  • Suquet, Pierre
OrganizationsLocationPeople

article

A homogenization model for the rheology and local field statistics of suspensions of particles in yield stress fluids

  • Ponte Castañeda, Pedro
Abstract

<jats:p> We investigate the rheological behavior of athermal particle suspensions using experiments and theory. A generalized version of the homogenization estimates of Ponte Castañeda and Willis [J. Mech. Phys. Solids, 43(12), 1919–1951 (1995)] is presented for the effective viscosity of athermal suspensions accounting for additional microstructural features (e.g., polydispersity) via an empirical parameter, [Formula: see text]. For the case of identically sized spheres dispersed with statistical isotropy in a Newtonian fluid, the parameter [Formula: see text] is estimated from the results of Batchelor and Green [J. Fluid Mech. 56(2), 375–400 (1972)] for the Huggins coefficient. Predictions for the macroscopic viscosity are found to be in good agreement with measurements for monodisperse polymethyl methacrylate (PMMA) spheres in glycerol, as well as for the empirical Krieger–Dougherty equation for the shear viscosity. The proposed estimates have the added benefit that they can also be used to get information on the statistics of the stress and strain-rate fields in the fluid and particle phases. In addition, results for the effective shear viscosity are used in combination with the linear comparison method of Ponte Castañeda [J. Mech. Phys. Solids 39(1), 45–71 (1991)] to generate the corresponding estimates for the effective macroscopic behavior and field statistics of particle suspensions in (viscoplastic) yield stress fluids. Good agreement is also found between the theoretical estimates and experimental results for the effective yield and flow stress of suspensions with monodisperse PMMA spheres in Carbopol. Finally, it is argued that the results for the phase averages and fluctuations of the stress and strain-rate fields can be used to provide a physical interpretation for the parameter [Formula: see text] in terms of the polydispersity of the suspension and its implications for the percolation threshold. </jats:p>

Topics
  • impedance spectroscopy
  • phase
  • theory
  • experiment
  • viscosity
  • homogenization
  • polydispersity