Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karl, Tobias

  • Google
  • 4
  • 4
  • 43

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023On fully symmetric implicit closure approximations for fiber orientation tensors8citations
  • 2022Unified mean-field modeling of viscous short-fiber suspensions and solid short-fiber reinforced composites8citations
  • 2021Coupled simulation of flow-induced viscous and elastic anisotropy of short-fiber reinforced composites12citations
  • 2021Asymptotic fiber orientation states of the quadratically closed Folgar-Tucker equation and a subsequent closure improvement15citations

Places of action

Chart of shared publication
Böhlke, Thomas
4 / 55 shared
Schneider, Matti
1 / 32 shared
Gatti, Davide
2 / 2 shared
Frohnapfel, Bettina
2 / 2 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Böhlke, Thomas
  • Schneider, Matti
  • Gatti, Davide
  • Frohnapfel, Bettina
OrganizationsLocationPeople

article

Asymptotic fiber orientation states of the quadratically closed Folgar-Tucker equation and a subsequent closure improvement

  • Gatti, Davide
  • Böhlke, Thomas
  • Frohnapfel, Bettina
  • Karl, Tobias
Abstract

Anisotropic fiber-reinforced composites are used in lightweight construction, which is of great industrial relevance. During mold filling of fiber suspensions, the microstructural evolution of the local fiber arrangement and orientation distribution is determined by the local velocity gradient. Based on the Folgar–Tucker equation, which describes the evolution of the second-order fiber orientation tensor in terms of the velocity gradient, the present study addresses selected states of deformation rates that can locally occur in complex flow fields. For such homogeneous flows, exact solutions for the asymptotic fiber orientation states are derived and discussed based on the quadratic closure. In contrast to the existing literature, the derived exact solutions take into account the fiber-fiber interaction. The analysis of the asymptotic solutions relying upon the common quadratic closure shows disadvantages with respect to the predicted material symmetry, namely, the anisotropy is overestimated for strong fiber-fiber interaction. This motivates us to suggest a novel normalized fully symmetric quadratic closure. Two versions of this new closure are derived regarding the prediction of anisotropic properties and the fiber orientation evolution. The fiber orientation states determined with the new closure approach show an improved prediction of anisotropy in both effective viscous and elastic composite behaviors. In addition, the symmetrized quadratic closure has a simple structure that reduces the effort in numerical implementation compared to more elaborated closure schemes.

Topics
  • impedance spectroscopy
  • anisotropic
  • fiber-reinforced composite