People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Parisi, Daniele
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024Phase inversion detection in immiscible binary polymer blends via zero-shear viscosity measurementscitations
- 2024A novel SBS compound via blending with PS-B-PMBL diblock copolymer for enhanced mechanical propertiescitations
- 2024Enzymatic bulk synthesis, characterization, rheology, and biodegradability of biobased 2,5-bis(hydroxymethyl)furan polyesterscitations
- 2023Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervatescitations
- 2023Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervatescitations
- 2023Gelation and Re-entrance in Mixtures of Soft Colloids and Linear Polymers of Equal Sizecitations
- 2023Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesivescitations
- 2023Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesivescitations
- 2023Undershoots in shear startup of entangled linear polymer blendscitations
- 2022Alternative use of the sentmanat extensional rheometer to investigate the rheological behavior of industrial rubbers at very large deformationscitations
- 2021Nonlinear rheometry of entangled polymeric rings and ring-linear blendscitations
- 2021Internal Microstructure Dictates Interactions of Polymer-grafted Nanoparticles in Solutioncitations
- 2021Effect of softness on glass melting and re-entrant solidification in mixtures of soft and hard colloidscitations
- 2021Tunable Hydrogels with Improved Viscoelastic Properties from Hybrid Polypeptidescitations
- 2021Rheological response of entangled isotactic polypropylene melts in strong shear flowscitations
- 2021Nonlinear Shear Rheology of Entangled Polymer Ringscitations
- 2020Flow-induced crystallization of poly(ether ether ketone)citations
- 2020Determination of intrinsic viscosity of native cellulose solutions in ionic liquidscitations
- 2020Stress Relaxation in Symmetric Ring-Linear Polymer Blends at Low Ring Fractionscitations
- 2020Shear Flow-Induced Crystallization of Poly(ether ether ketone)citations
- 2019Extensional rheology of ring polystyrene melt and linear/ring polystyrene blends
- 2019Extensional rheology of ring polystyrene melt and linear/ring polystyrene blends
- 2018Asymmetric soft-hard colloidal mixturescitations
Places of action
Organizations | Location | People |
---|
article
Determination of intrinsic viscosity of native cellulose solutions in ionic liquids
Abstract
<p>The weight-average molecular weights of six native cellulose samples in ionic liquids were determined through steady shear viscosity measurements in the ionic liquid butyl methyl imidazolium chloride. The intrinsic viscosity [η] in ethyl methyl imidazolium acetate (EMImAc) is measured using a gravity-driven glass capillary viscometer and found to be independent of temperature in the range of 30-80 °C, disproving a literature report of [η] in EMImAc, exhibiting a strong temperature dependence. Findings are contrasted with values of intrinsic viscosity in cupriethylenediamine hydroxide, the most widely used solvent to dissolve and analyze the molecular weight of cellulose pulps in industry. Differences are tentatively attributed to the different temporary association properties of cellulose chains in the two solvents. Finally, it is demonstrated that cellulose adsorbs at the air/solution interface in three different ionic liquids to create a viscoelastic liquid interfacial layer of higher concentration. Adsorption at the air/solution interface gives an extra contribution to the measured torque in various rotational rheometer geometries, which apparently simply adds to the torque from the pure bulk solution. </p>