Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhao, Qibin

  • Google
  • 2
  • 11
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014The rheology and processing of "edge sheared" colloidal polymer opals17citations
  • 2012Electrically conductive polymeric photonic crystals21citations

Places of action

Chart of shared publication
Snoswell, David R. E.
2 / 2 shared
Mackley, Malcolm
1 / 6 shared
Butler, Simon
1 / 1 shared
Baumberg, J. J.
1 / 6 shared
Wong, Hon
1 / 1 shared
Baumberg, Jeremy J.
1 / 26 shared
Haines, Andrew I.
1 / 1 shared
Hellmann, G. Peter
1 / 1 shared
Spahn, Peter
1 / 1 shared
Goldberg-Oppenheimer, P.
1 / 1 shared
Imai, Yusuke
1 / 2 shared
Chart of publication period
2014
2012

Co-Authors (by relevance)

  • Snoswell, David R. E.
  • Mackley, Malcolm
  • Butler, Simon
  • Baumberg, J. J.
  • Wong, Hon
  • Baumberg, Jeremy J.
  • Haines, Andrew I.
  • Hellmann, G. Peter
  • Spahn, Peter
  • Goldberg-Oppenheimer, P.
  • Imai, Yusuke
OrganizationsLocationPeople

article

The rheology and processing of "edge sheared" colloidal polymer opals

  • Zhao, Qibin
  • Snoswell, David R. E.
  • Mackley, Malcolm
  • Butler, Simon
  • Baumberg, J. J.
  • Wong, Hon
Abstract

This paper is concerned with the rheology and processing of solvent-free core shell “polymer opals” that consist of a soft outer shell grafted to hard colloidal polymer core particles. Strong iridescent colours can be produced by shearing the material in a certain way that causes the initially disordered spheres to rearrange into ordered crystalline structures and produce colours by diffraction and interference of multiple light scattering, similar to gemstone opals. The basic linear viscoelastic rheology of a polymer opal sample was determined as a function of temperature and the material was found to be highly viscoelastic at all tested temperatures. A Cambridge Multipass Rheometer (MPR) was specifically modified in order to make controlled mechanical measurements of initially disordered polymer opal tapes that were sandwiched between protective PET sheets. Axial extension, simple shear and a novel “edge shearing” geometry were all evaluated and multiple successive experiments of the edge shearing test were carried out at different temperatures. The optical development of colloidal ordering, measured as optical opalescence, was quantified by spectroscopy using visible backscattered light. The development of opalescence was found to be sensitive to the geometry of deformation and a number of process variables suggesting a complex interaction of parameters that caused the opalescence. In order to identify aspects of the deformation mechanism of the edge shearing experiment, a separate series of in situ optical experiments were carried out and this helped indicate the extent of simple shear generated with each edge shear deformation. The results show that strong ordering can be induced by successive edge shearing deformation. The results are relevant to polymer opal rheology, processing and mechanisms relating to ordering within complex viscoelastic fluids.

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • deformation mechanism
  • light scattering