Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruymbeke, E. Van

  • Google
  • 1
  • 2
  • 35

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Linear and nonlinear viscoelastic properties of bidisperse linear polymers: Mixing law and tube pressure effect35citations

Places of action

Chart of shared publication
Nielsen, J.
1 / 2 shared
Hassager, Ole
1 / 78 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Nielsen, J.
  • Hassager, Ole
OrganizationsLocationPeople

article

Linear and nonlinear viscoelastic properties of bidisperse linear polymers: Mixing law and tube pressure effect

  • Nielsen, J.
  • Hassager, Ole
  • Ruymbeke, E. Van
Abstract

In this manuscript, we extend the tube-based model that we developed for predicting the linear viscoelasticity of entangled polymers [van Ruymbeke et al., J. Non-Newtonian Fluid Mech. 128, 7-22 (2005)] to the prediction of the extensional rheology of monodisperse and bidisperse linear polymers and confront the results to experimental data. This model is based on the concepts of stretch-orientation separability [McLeish and Larson, J. Rheol. 42, 81-110 (1998)] and inter-chain pressure [Marrucci and Ianniruberto, Macromolecules 37, 3934-3942 (2004)]. In order to deal with polydisperse samples, a new mixing law is proposed. As it does not require knowledge of the full linear relaxation spectrum, the proposed model is a powerful predictive tool. Very good agreement is found between theoretical and experimental results. For bidisperse samples, the individual contribution of each component is determined, and it is shown that only few percent of long chains are enough to generate the strong strain hardening observed in the experimental data. Last, we discuss the value of the tube diameter relaxation time. For monodisperse samples, this parameter is found to scale with M-2. However, for bidisperse samples, as it was already observed by Wagner et al. [J. Rheol. 52, 67-86 (2008)], the tube diameter relaxation time of the long component must be rescaled, which is contrary to the inter-chain pressure model and opens several new questions.

Topics
  • impedance spectroscopy
  • polymer
  • viscoelasticity