People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feeney, Andrew
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024High Stiffness Resin for Flexural Ultrasonic Transducers
- 2024A 3D-printable metamaterial using a magnetic membrane for tuneable acoustic resonance at low frequencies
- 2024High Frequency Air-Coupled Ultrasound Measurement with the Flexural Ultrasonic Transducer
- 2024Langevin Transducers Incorporating TPMS Lattice Front Masses
- 2024Characterisation of 3D Printable Material for an Acoustic Metamaterial Cell with Tuneable Resonancecitations
- 2023Flexural ultrasonic transducers with nonmetallic membranes
- 2023Microscale Nitinol Hardness Measurements for Engineering Adaptive Ultrasonic Devices
- 2023Fabrication and Dynamic Characterisation of a Nitinol Langevin Transducer
- 2022Enhanced Resolution Phase Transformations in a Nitinol Cymbal Ultrasonic Devicecitations
- 2021Active damping of ultrasonic receiving sensors through engineered pressure wavescitations
- 2021Higher order modal dynamics of the flexural ultrasonic transducercitations
- 2020Venting in the comparative study of flexural ultrasonic transducers to improve resilience at elevated environmental pressure levelscitations
- 2020The high frequency flexural ultrasonic transducer for transmitting and receiving ultrasound in aircitations
- 2020The nonlinear dynamics of flexural ultrasonic transducers
- 2020Ultrasonic transducer
- 2020Measurement using flexural ultrasonic transducers in high pressure environmentscitations
- 2019Dynamic nonlinearity in piezoelectric flexural ultrasonic transducerscitations
- 2019Dynamic nonlinearity in piezoelectric flexural ultrasonic transducerscitations
- 2019The Nonlinear Dynamics of Flexural Ultrasonic Transducers
- 2019Wideband electromagnetic dynamic acoustic transducer as a standard acoustic source for air-coupled ultrasonic sensorscitations
- 2018Dynamic characteristics of flexural ultrasonic transducerscitations
- 2018HiFFUTs for high temperature ultrasound
- 2018Nonlinearity in the dynamic response of flexural ultrasonic transducerscitations
- 2018High-frequency measurement of ultrasound using flexural ultrasonic transducerscitations
- 2018Nonlinearity in the dynamic response of the flexural ultrasonic transducerscitations
- 2018The dynamic performance of flexural ultrasonic transducerscitations
- 2017HiFFUTs for High Temperature Ultrasound
- 2017Dynamic Characteristics of Flexural Ultrasonic Transducerscitations
- 2017Ultrasonic compaction of granular geological materialscitations
- 2016An ultrasonic orthopaedic surgical device based on a cymbal transducercitations
- 2016Optimisation of a cymbal transducer for its use in a high-power ultrasonic cutting device for bone surgerycitations
- 2016Dynamics characterisation of cymbal transducers for power ultrasonics applicationscitations
- 2014A cymbal transducer for power ultrasonics applicationscitations
- 2014Nitinol cymbal transducers for tuneable ultrasonic devices
Places of action
Organizations | Location | People |
---|
document
Measurement using flexural ultrasonic transducers in high pressure environments
Abstract
<p>The flexural ultrasonic transducer comprises a metallic membrane to which an active element such as a piezoelectric ceramic is attached. The normal modes of the membrane are exploited to generate and receive the desired ultrasonic wave. Flexural ultrasonic transducers are popular due to their ability to couple to different media without requiring matching layers. There is growing demand for ultrasound measurement using flexural ultrasonic transducers in high pressure environments, such as in gas metering. However, their sealing increases the risk of transducer deformation as the pressure level is raised, due to pressure imbalance between the internal cavity of the transducer and the external environment. In this study, a novel form of flexural ultrasonic transducer for operation in high pressure environments, those above 100 bar, is shown alongside key measurement strategies. Different methods can be used to enable pressure equalization between the internal cavity and the external environment, one of which is venting and used in this study. Dynamic performance is monitored via pitch-catch ultrasound measurement in air up to 130 bar. The results suggest the suitability of the vented transducer for operation in high pressure environments compared to the classical flexural ultrasonic transducer, constituting a significant development in ultrasonic measurement.</p>