People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larsen, Niels Bent
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022High Resolution Dual Material Stereolithography for Monolithic Microdevicescitations
- 2022Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Molding
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2015Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection moldingcitations
- 2013Injection molding of high aspect ratio sub-100 nm nanostructurescitations
- 2013Designing CAF-adjuvanted dry powder vaccinescitations
- 2012A Platform for Functional Conductive Polymers
- 2012Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Registercitations
- 2011Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer filmcitations
- 2011Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experimentscitations
- 2011Microwave assisted click chemistry on a conductive polymer filmcitations
- 2011Selective gas sensing for photonic crystal lasers
- 2010Fast prototyping of injection molded polymer microfluidic chipscitations
- 2010Nanostructures for all-polymer microfluidic systemscitations
- 2010“Electro-Click” on Conducting Polymer Films
- 2008Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate
- 2008Conductive Polymer Functionalization by Click Chemistrycitations
- 2007Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stampingcitations
- 2006On the Injection Molding of Nanostructured Polymer Surfacescitations
- 2001Surface morphology of PS-PDMS diblock copolymer filmscitations
Places of action
Organizations | Location | People |
---|
article
Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducers
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) have a nonlinear relationship between the applied voltage and the emitted signal, which is detrimental to conventional contrast enhanced ultrasound (CEUS) techniques. Instead, a three-pulse amplitude modulation (AM) sequence has been proposed, which is not adversely affected by the nonlinearly emitted harmonics. In this paper, this is shown theoretically, and the performance of the sequence is verified using a 4.8 MHz linear capacitive micromachined ultrasonic transducer (CMUT) array, and a comparable lead zirconate titanate (PZT) array, across 6–60 V applied alternating current (AC) voltage. CEUS images of the contrast agent SonoVue flowing through a 3D printed hydrogel phantom showed an average enhancement in contrast-to-tissue ratio (CTR) between B-mode and CEUS images of 49.9 and 37.4 dB for the PZT array and CMUT, respectively. Furthermore, hydrophone recordings of the emitted signals showed that the nonlinear emissions from the CMUT did not significantly degrade the cancellation in the compounded AM signal, leaving an average of 2% of the emitted power between 26 and 60 V of AC. Thus, it is demonstrated that CMUTs are capable of CEUS imaging independent of the applied excitation voltage when using a three-pulse AM sequence.<br/>