People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maack, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Interrelated data set from nondestructive and destructive material testing of concrete compressive strength specimens
- 2023Ways to unlock the potential of non-destructive concrete testing for the reliability assessment of our built environmentcitations
- 2021Experimental analysis of the acoustic field of an ultrasonic pulse induced by a fluidic switchcitations
- 2021Acoustic and flow data of fluidic and piezoelectric ultrasonic transducerscitations
- 2018Reliability assessment of existing bridge constructions based on results of non-destructive testingcitations
- 2015Study of special challenges for NDT-methods on nuclear structures
Places of action
Organizations | Location | People |
---|
article
Experimental analysis of the acoustic field of an ultrasonic pulse induced by a fluidic switch
Abstract
Ultrasonic inspection is a common tool for non-destructive testing in civil engineering (NDT-CE). Currently, transducers are coupled directly to the specimen surface, which makes the inspection time-consuming. Air-coupled ultrasound (ACU) transducers are more time-efficient but need a high pressure amplitude as the impedance mismatch between the air and the concrete is high and large penetration depth is needed for the inspection. Current approaches aim at eliminating the impedance mismatch between the transducer and the air to gain amplitude; however, they hardly fulfill the NDT-CE requirements. In this study, an alternative approach for ultrasound generation is presented: the signal is generated by a fluidic switch that rapidly injects a mass flow into the ambience. The acoustic field, the flow field, and their interaction are investigated. It is shown that the signal has dominant frequencies in the range of 35–60 kHz, and the amplitude is comparable to that of a commercial ACU transducer.