Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petzold, Linda

  • Google
  • 1
  • 4
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Bayesian inference of elastic properties with resonant ultrasound spectroscopy34citations

Places of action

Chart of shared publication
Bales, Ben
1 / 1 shared
Pollock, Tresa M.
1 / 12 shared
Lenthe, William C.
1 / 9 shared
Goodlet, Brent R.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Bales, Ben
  • Pollock, Tresa M.
  • Lenthe, William C.
  • Goodlet, Brent R.
OrganizationsLocationPeople

article

Bayesian inference of elastic properties with resonant ultrasound spectroscopy

  • Bales, Ben
  • Pollock, Tresa M.
  • Lenthe, William C.
  • Goodlet, Brent R.
  • Petzold, Linda
Abstract

<jats:p>Bayesian modeling and Hamiltonian Monte Carlo (HMC) are utilized to formulate a robust algorithm capable of simultaneously estimating anisotropic elastic properties and crystallographic orientation of a specimen from a list of measured resonance frequencies collected via Resonance Ultrasound Spectroscopy (RUS). Unlike typical optimization procedures which yield point estimates of the unknown parameters, computing a Bayesian posterior yields probability distributions for the unknown parameters, and HMC is an efficient way to compute this posterior. The algorithms described are demonstrated on RUS data collected from two parallelepiped specimens of structural metal alloys. First, the elastic constants for a specimen of fine-grain polycrystalline Ti-6Al-4 V with random crystallographic texture and isotropic elastic symmetry are estimated. Second, the elastic constants and crystallographic orientation for a single crystal Ni-based superalloy CMSX-4 specimen are accurately determined, using only measurements of the specimen geometry, mass, and resonance frequencies. The unique contributions of this paper are as follows: the application of HMC for sampling the Bayesian posterior of a probabilistic RUS model, and the procedure for simultaneous estimation of elastic constants and lattice-specimen misorientation. Compared to previous approaches these algorithms demonstrate superior convergence behavior, particularly when the initial parameterization is unknown, and enable substantially simplified experimental procedures.</jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • grain
  • anisotropic
  • texture
  • random
  • isotropic
  • superalloy