Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Liukkonen, Jukka

  • Google
  • 2
  • 7
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Ultrasound backscattering is anisotropic in bovine articular cartilage7citations
  • 2015Inter-individual changes in cortical bone three-dimensional microstructure and elastic coefficient have opposite effects on radial sound speed4citations

Places of action

Chart of shared publication
Virén, Tuomas
1 / 1 shared
Töyräs, Juha
2 / 28 shared
Jurvelin, Jukka S.
2 / 11 shared
Inkinen, Satu I.
1 / 2 shared
Tiitu, Virpi
1 / 4 shared
Malo, Markus K. H.
1 / 2 shared
Eneh, Chibuzor T. M.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Virén, Tuomas
  • Töyräs, Juha
  • Jurvelin, Jukka S.
  • Inkinen, Satu I.
  • Tiitu, Virpi
  • Malo, Markus K. H.
  • Eneh, Chibuzor T. M.
OrganizationsLocationPeople

article

Inter-individual changes in cortical bone three-dimensional microstructure and elastic coefficient have opposite effects on radial sound speed

  • Töyräs, Juha
  • Jurvelin, Jukka S.
  • Malo, Markus K. H.
  • Eneh, Chibuzor T. M.
  • Liukkonen, Jukka
Abstract

Knowledge about simultaneous contributions of tissue microstructure and elastic properties on ultrasound speed in cortical bone is limited. In a previous study, porosities and elastic coefficients of cortical bone in human femurs were shown to change with age. In the present study, influences of inter-individual and site-dependent variation in cortical bone microstructure and elastic properties on radial speed of sound (SOS; at 4, 6, and 8 MHz) were investigated using three-dimensional (3D) finite difference time domain modeling. Models with fixed (nominal model) and sample-specific (sample-specific model) values of radial elastic coefficients were compared. Elastic coefficients and microstructure for samples (n = 24) of human femoral shafts (n = 6) were derived using scanning acoustic microscopy and micro-computed tomography images, respectively. Porosity-related SOS varied more extensively in nominal models than in sample-specific models. Linear correlation between pore separation and SOS was similar (R = 0.8, p < 0.01, for 4 MHz) for both models. The determination coefficient (R= 0.75, p < 0.05) between porosity and radial SOS, especially at 4 MHz, was highest in the posterior quadrant. The determination coefficient was lower for models with sample-specific values of radial elastic coefficient implemented (R < 0.33, p < 0.05), than for nominal models (0.48 < R< 0.63, p < 0.05). This information could be useful in in vivo pulse-echo cortical thickness measurements applying constant SOS.

Topics
  • impedance spectroscopy
  • pore
  • tomography
  • porosity
  • microscopy