Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jespersen, O.

  • Google
  • 1
  • 10
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones2citations

Places of action

Chart of shared publication
Guastavino, R.
1 / 1 shared
Nielsen, F. K.
1 / 1 shared
Andresen, S.
1 / 2 shared
Rasmussen, Henrik Koblitz
1 / 62 shared
Yuan, W.
1 / 4 shared
Stefani, Alessio
1 / 31 shared
Bang, Ole
1 / 142 shared
Herholdt-Rasmussen, N.
1 / 1 shared
Rose, B.
1 / 2 shared
Markos, C.
1 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Guastavino, R.
  • Nielsen, F. K.
  • Andresen, S.
  • Rasmussen, Henrik Koblitz
  • Yuan, W.
  • Stefani, Alessio
  • Bang, Ole
  • Herholdt-Rasmussen, N.
  • Rose, B.
  • Markos, C.
OrganizationsLocationPeople

article

Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones

  • Guastavino, R.
  • Nielsen, F. K.
  • Andresen, S.
  • Rasmussen, Henrik Koblitz
  • Yuan, W.
  • Stefani, Alessio
  • Bang, Ole
  • Jespersen, O.
  • Herholdt-Rasmussen, N.
  • Rose, B.
  • Markos, C.
Abstract

In this paper we present our latest work on Fiber Bragg Gratings (FBGs) in microstructured polymer optical fibers (mPOFs) and their application as strain sensing transducers in devices, such as accelerometers and microphones. We demonstrate how the cross-sensitivity of the FBG to temperature is eliminated by using dual-FBG technology and how mPOFs fabricated from different grades of TOPAS with glass transition temperatures around 135 degrees C potentially allow high-temperature humidity insensitive operation. The results bring the mPOF FBG closer to being a viable technology for commercial applications requiring high sensitivity due to the low Young's Modulus of polymer.

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature