People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques-Hueso, Jose
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Upconversion 3D printing enhancement via silver sensitization to enable selective metallizationcitations
- 2023Low-power laser manufacturing of copper tracks on 3D printed geometry using liquid polyimide coatingcitations
- 2022Multimaterial 3D Printing Technique for Electronic Circuitry Using Photopolymer and Selective Metallizationcitations
- 2022Routes towards manufacturing biodegradable electronics with polycaprolactone (PCL) via direct light writing and electroless platingcitations
- 2020Light based synthesis of metallic nanoparticles on surface-modified 3D printed substrates for high performance electronic systemscitations
- 2019A rapid technique for the direct metallization of PDMS substrates for flexible and stretchable electronics applicationscitations
- 2019Selective Electroless Copper Deposition by Using Photolithographic Polymer/Ag Nanocompositecitations
- 2019Photolithographic nanoseeding method for selective synthesis of metal-catalysed nanostructurescitations
- 2019Selective Metallization of 3D Printable Thermoplastic Polyurethanescitations
- 2019Selective metallisation of 3D printable thermoplastic polyurethanescitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018A Rapid Photopatterning Method for Selective Plating of 2D and 3D Microcircuitry on Polyetherimidecitations
- 2018Hybrid Additive Manufacture of Conformal Antennascitations
- 2014Physical performance limitations of luminescent down-conversion layers for photovoltaic applicationscitations
- 2013Enhanced up-conversion for photovoltaics using 2D photonic crystalscitations
- 2012Optical properties of lanthanide dyes for spectral conversion encapsulated in porous silica nanoparticles
- 2012Nanoplasmonics for photovoltaic applicationscitations
- 2012Plasmon dumping in Ag-nanoparticles/polymer composite for optical detection of amines and thiols vaporscitations
Places of action
Organizations | Location | People |
---|
document
Nanoplasmonics for photovoltaic applications
Abstract
Plasmonics has become a focus of recent research in photovoltaic applications primarily due to their effects in enhancing the absorption performance of solar cells. In this paper a review of different approaches that have been proposed to integrate plasmonics technologies into solar cells is presented. It has been observed that a range of metallic nanostructures that show plasmon resonance wavelength in the visible and near-infrared regime can be utilized to increase the coupling of light into the solar cell. This is widely used to increase the coupling of light that can be trapped in thin layers of active regions as in thin film technologies. In this review paper, more attention is given to the techniques of fabricating the metallic nanoparticles and the ways to control their plasmon resonance wavelengths. The role of the shape, size, dielectric permittivity of the host and the type of the metallic nanoparticles on tuning the resonance wavelength are analyzed. Furthermore, the cluster of nanoparticles gives different resonance wavelength from the individual nanoparticles due to dipolar coupling among the nanoparticles. In conclusion, we show how the plasmon resonance can be engineered to increase the absorption performance of conventional solar cells.