Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schreuders, Herman

  • Google
  • 16
  • 61
  • 809

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2024Structural and Optical Properties of Thin Film β-Ta upon Exposure to Hydrogen to Asses Its Applicability as Hydrogen Sensing Material7citations
  • 2024Towards hydrogen fueled aircraftcitations
  • 2024Advancing Hydrogen Sensing for Sustainable Aviation1citations
  • 2023In-situ S/TEM Visualization of Metal-to-Metal Hydride Phase Transformation of Magnesium Thin Filmscitations
  • 2023Tuning the Properties of Thin-Film TaRu for Hydrogen-Sensing Applications16citations
  • 2020Metallurgical Synthesis of Mg2FexSi1- x Hydride2citations
  • 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection303citations
  • 2019Metal-polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection303citations
  • 2019Effect of the addition of zirconium on the photochromic properties of yttrium oxy-hydride16citations
  • 2018Elastic versus Alloying Effects in Mg-Based Hydride Films28citations
  • 2017Enhancement of Destabilization and Reactivity of Mg Hydride Embedded in Immiscible Ti Matrix by Addition of Cr13citations
  • 2017Photochromism of rare-earth metal-oxy-hydrides65citations
  • 2015Destabilization of Mg Hydride by Self-Organized Nanoclusters in the Immiscible Mg-Ti Systemcitations
  • 2012Optical hydrogen sensors based on metal-hydrides15citations
  • 2012Combined XPS and first principle study of metastable Mg-Ti thin films6citations
  • 2006Structural and optical properties of MgxAl1-xH y gradient thin films34citations

Places of action

Chart of shared publication
Thijs, Michel
1 / 2 shared
Newton, Nick Jonckers
1 / 1 shared
Verhoeff, Daan J.
1 / 1 shared
Bannenberg, Lars
5 / 12 shared
Dewi, H. S.
1 / 2 shared
Dissanayake, K. P.
1 / 1 shared
Groves, Roger
2 / 29 shared
Dewi, H. S. Handika Sandra
1 / 1 shared
Dissanayake, K. P. W.
1 / 2 shared
Jinschek, Joerg R.
1 / 16 shared
Bannenberg, Lars J.
2 / 3 shared
Krishnan, Gopi
2 / 9 shared
Beugen, Nathan Van
1 / 1 shared
Hall, Stephen
1 / 19 shared
Dam, Bernard
12 / 23 shared
Kinane, Christy
1 / 2 shared
Wang, Yongming
1 / 2 shared
Nakamura, Yumiko
1 / 2 shared
Isobe, Shigehito
1 / 1 shared
Westerwaal, Ruud J.
2 / 2 shared
Sakaki, Kouji
1 / 9 shared
Asano, Kohta
2 / 7 shared
Kim, Hyunjeong
1 / 7 shared
Fanta, Alice Bastos Da Silva
1 / 1 shared
Susarrey-Arce, Arturo
2 / 4 shared
Nugroho, Ferry A. A.
2 / 4 shared
Kadkhodazadeh, Shima
2 / 23 shared
Cusinato, Lucy
2 / 2 shared
Darmadi, Iwan
2 / 5 shared
Wagner, Jakob Birkedal
1 / 68 shared
Bastos Da Silva Fanta, Alice
1 / 23 shared
Langhammer, Christoph
1 / 12 shared
Hellman, Anders
1 / 3 shared
Antosiewicz, Tomasz J.
1 / 1 shared
Zhdanov, Vladimir P.
1 / 1 shared
Nijskens, J.
1 / 1 shared
Cornelius, S.
2 / 3 shared
Nafezarefi, Fahimeh
2 / 2 shared
Kooi, Bart J.
1 / 29 shared
Mooij, Lennard
1 / 2 shared
Palmisano, Valerio
1 / 1 shared
Griessen, Ronald
1 / 1 shared
Baldi, Andrea
1 / 11 shared
Westerwaal, R. J.
2 / 12 shared
Asano, K.
1 / 2 shared
Mooij, Lennard P. A.
1 / 2 shared
Boelsma, Christiaan
1 / 4 shared
Eijt, Stephan W. H.
1 / 1 shared
Ngene, Peter
1 / 18 shared
Anastasopol, Anca
1 / 1 shared
Slaman, Martin
1 / 1 shared
Jensen, I. J. T.
1 / 1 shared
Løvvik, O. M.
1 / 2 shared
Diplas, S.
1 / 4 shared
Züttel, A.
1 / 6 shared
Griessen, R.
1 / 16 shared
Chacon, C.
1 / 6 shared
Hjörvarsson, B.
1 / 4 shared
Mechelen, J. L. M. Van
1 / 1 shared
Borgschulte, A.
1 / 14 shared
Gremaud, R.
1 / 7 shared
Chart of publication period
2024
2023
2020
2019
2018
2017
2015
2012
2006

Co-Authors (by relevance)

  • Thijs, Michel
  • Newton, Nick Jonckers
  • Verhoeff, Daan J.
  • Bannenberg, Lars
  • Dewi, H. S.
  • Dissanayake, K. P.
  • Groves, Roger
  • Dewi, H. S. Handika Sandra
  • Dissanayake, K. P. W.
  • Jinschek, Joerg R.
  • Bannenberg, Lars J.
  • Krishnan, Gopi
  • Beugen, Nathan Van
  • Hall, Stephen
  • Dam, Bernard
  • Kinane, Christy
  • Wang, Yongming
  • Nakamura, Yumiko
  • Isobe, Shigehito
  • Westerwaal, Ruud J.
  • Sakaki, Kouji
  • Asano, Kohta
  • Kim, Hyunjeong
  • Fanta, Alice Bastos Da Silva
  • Susarrey-Arce, Arturo
  • Nugroho, Ferry A. A.
  • Kadkhodazadeh, Shima
  • Cusinato, Lucy
  • Darmadi, Iwan
  • Wagner, Jakob Birkedal
  • Bastos Da Silva Fanta, Alice
  • Langhammer, Christoph
  • Hellman, Anders
  • Antosiewicz, Tomasz J.
  • Zhdanov, Vladimir P.
  • Nijskens, J.
  • Cornelius, S.
  • Nafezarefi, Fahimeh
  • Kooi, Bart J.
  • Mooij, Lennard
  • Palmisano, Valerio
  • Griessen, Ronald
  • Baldi, Andrea
  • Westerwaal, R. J.
  • Asano, K.
  • Mooij, Lennard P. A.
  • Boelsma, Christiaan
  • Eijt, Stephan W. H.
  • Ngene, Peter
  • Anastasopol, Anca
  • Slaman, Martin
  • Jensen, I. J. T.
  • Løvvik, O. M.
  • Diplas, S.
  • Züttel, A.
  • Griessen, R.
  • Chacon, C.
  • Hjörvarsson, B.
  • Mechelen, J. L. M. Van
  • Borgschulte, A.
  • Gremaud, R.
OrganizationsLocationPeople

document

Optical hydrogen sensors based on metal-hydrides

  • Schreuders, Herman
  • Slaman, Martin
  • Westerwaal, R. J.
  • Dam, Bernard
Abstract

For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

Topics
  • impedance spectroscopy
  • Carbon
  • Oxygen
  • Magnesium
  • Magnesium
  • glass
  • glass
  • laser emission spectroscopy
  • crack
  • Hydrogen
  • palladium