Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kimerling, Lionel C. L. C.

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Photo-induced trimming of chalcogenide-assisted silicon photonic circuitscitations

Places of action

Chart of shared publication
Melloni, Andrea A.
1 / 1 shared
Strain, Michael
1 / 10 shared
Singh, Vivek Kumar N. V. K. N.
1 / 1 shared
Agarwal, Anu Murthy M. A. M. M.
1 / 1 shared
Sorel, Marc M.
1 / 1 shared
Ferrari, Carlo C.
1 / 1 shared
Morichetti, Francesco F.
1 / 1 shared
Grillanda, Stefano S.
1 / 1 shared
Canciamilla, Antonio A.
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Melloni, Andrea A.
  • Strain, Michael
  • Singh, Vivek Kumar N. V. K. N.
  • Agarwal, Anu Murthy M. A. M. M.
  • Sorel, Marc M.
  • Ferrari, Carlo C.
  • Morichetti, Francesco F.
  • Grillanda, Stefano S.
  • Canciamilla, Antonio A.
OrganizationsLocationPeople

article

Photo-induced trimming of chalcogenide-assisted silicon photonic circuits

  • Melloni, Andrea A.
  • Kimerling, Lionel C. L. C.
  • Strain, Michael
  • Singh, Vivek Kumar N. V. K. N.
  • Agarwal, Anu Murthy M. A. M. M.
  • Sorel, Marc M.
  • Ferrari, Carlo C.
  • Morichetti, Francesco F.
  • Grillanda, Stefano S.
  • Canciamilla, Antonio A.
Abstract

We present an innovative and efficient technique for post-fabrication trimming of silicon photonic integrated circuits (PICs). Our approach exploits the high photosensitivity of chalcogenide glasses (ChGs) to induce local and permanent modifications of the optical properties and spectral responses of ChG-assisted silicon devices. We experimentally demonstrate the potential of this technique on ring resonator filters realized on a silicon-on-insulator platform, for which post-fabrication treatments enable to counteract the strong sensitivity to technological tolerances. Photosensitive ChGassisted silicon waveguides were realized by deposition of a As2S3 chalcogenide layer on top of conventional silicon channel waveguides. A resonant wavelength shift of 6.7 nm was achieved, largely exceeding the random resonance spread due to fabrication tolerances. Neither the ChG layer deposition, nor the trimming process introduces appreciable additional losses with respect to the bare silicon core waveguide. Performances of the trimming technique, such as speed and saturation effects, as well as nonlinear behavior and infrared writing issues are investigated and experimentally characterized.

Topics
  • Deposition
  • glass
  • glass
  • Silicon
  • random