Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abshire, J. B.

  • Google
  • 2
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Investigation of Erbium-doped tellurite glasses for a planar waveguide power amplifier at 1.57 micronscitations
  • 2012Er-doped Tellurite glasses for planar waveguide power amplifier with extended gain bandwidth3citations

Places of action

Chart of shared publication
Ohishi, Y.
2 / 10 shared
Senthil Murugan, Ganapathy
2 / 22 shared
Mackenzie, Jacob I.
2 / 18 shared
Suzuki, T.
2 / 19 shared
Yu, A. W.
2 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Ohishi, Y.
  • Senthil Murugan, Ganapathy
  • Mackenzie, Jacob I.
  • Suzuki, T.
  • Yu, A. W.
OrganizationsLocationPeople

document

Er-doped Tellurite glasses for planar waveguide power amplifier with extended gain bandwidth

  • Ohishi, Y.
  • Senthil Murugan, Ganapathy
  • Mackenzie, Jacob I.
  • Abshire, J. B.
  • Suzuki, T.
  • Yu, A. W.
Abstract

Tellurite glass compositions doped with erbium and erbium/ytterbium optimised to support extended gain bandwidth with significant amplification have been fabricated, and their thermal, optical absorption, excitation and luminescence properties investigated. Each rare-earth dopant concentration was set at 1x10<sup>20</sup>/cm<sup>3</sup>. Broad emission cross-section bandwidths up to 50nm FWHM were observed, with fluorescence lifetimes of ~3ms. Collinear pump probe measurements on ~4mm thick bulk samples revealed peak gains of up to 2.1dB/cm at a wavelength of 1535nm in the co-doped material, with an incident pump intensity of only I<sub>inc</sub>~8kW/cm<sup>2</sup> at a wavelength of 974nm. At equivalent absorbed pump powers between co-doped and single doped materials the relative gain was 1.25dB/cm (I<sub>inc</sub>~4kW/cm<sup>2</sup>) and 0.9dB/cm (I<sub>inc</sub>~8kW/cm<sup>2</sup>) respectively, demonstrating efficient energy transfer from the ytterbium to erbium ions. Excited state absorption at longer wavelengths was observed and characterised and its implication on realising sufficient gain in the wavelength band of interest is discussed.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • Ytterbium
  • luminescence
  • Erbium