People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czarski, Tomasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2019Multichannel Data Acquisition System for GEM Detectors citations
- 2016 Modeling of serial data acquisition structure for GEM detector system in Matlabcitations
- 2016The development of algorithms for the deployment of new version of GEM-detector-based acquisition systemcitations
- 2015FPGA based charge acquisition algorithm for soft X-ray diagnostics systemcitations
- 2014Development of GEM Gas Detectors for X-Ray Crystal Spectrometry citations
- 2013Fundamental Data Processing for GEM Detector Measurement System Applied for X - ray Diagnostics of Fusion Plasmas
- 2011Optimization of FPGA processing of GEM detector signal citations
- 2011Development of a 1D Triple GEM X-ray detector for a high-resolution x-ray diagnostics at JET
- 2005Optical network and FPGA/DSP based control system for free electon laser
- 2003Cavity Digital Control Testing System by Simulink Step Operation Method for TESLA Linear Accelerator and Free Electron Laser
Places of action
Organizations | Location | People |
---|
booksection
Optimization of FPGA processing of GEM detector signal
Abstract
This paper presents analysis of processing method of the signal from Gas Electron Multiplier (GEM) detector acquired in our Field-Programmable Gate Array (FPGA) based readout system. We have found that simple processing of GEM signal received from the charge amplifier, sampled at 100MHz with 10-bit resolution, after low-pass filtering with 15 MHz cut-off frequency, provides accuracy similar to obtained by processing of the raw GEM signal sampled at 2.5 GHz frequency with 8-bit resolution. Even when 3 bits are lost due to long term instability of the detector and analog part of the system - resulting in 7-bit effective resolution, the reasonable accuracy is still preserved. Additionally we have analyzed computational power required to perform the real-time analysis of the GEM signal, taking into consideration resources offered by the FPGA chip used in the prototype platform.