Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jin, X.

  • Google
  • 6
  • 47
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024A review of principles and options for the re-use of machining chips by solid, semi-solid or melt-based processingcitations
  • 2024Unveiling the radiation-induced defect production and damage evolution in tungsten using multi-energy Rutherford backscattering spectroscopy in channeling configuration7citations
  • 2021Laser-guided corrosion control: a new approach to tailor the degradation of Mg-alloys15citations
  • 2016Spiropyran based smart compositescitations
  • 2011Influence of particle size in hybrid solar cells composed of CdSe nanocrystals and poly(3-hexylthiophene)28citations
  • 2011ZnO core spike particles and nano-networks and their wide range of applications1citations

Places of action

Chart of shared publication
Azevedo, Jmc
1 / 4 shared
Murray, Jw
1 / 1 shared
Liao, Z.
1 / 3 shared
Cleaver, Cj
1 / 5 shared
Clare, At
1 / 3 shared
Allwood, Jm
1 / 8 shared
Cullen, Jm
1 / 1 shared
Zhou, W.
1 / 11 shared
Šestan, A.
1 / 1 shared
Djurabekova, Flyura Gatifovna
1 / 37 shared
Markelj, S.
1 / 5 shared
Kelemen, M.
1 / 5 shared
Nordlund, Kai
1 / 54 shared
Granberg, Fredric
1 / 15 shared
Crespillo, M. L.
1 / 5 shared
Lu, Eryang
1 / 5 shared
Zavašnik, J.
1 / 1 shared
Punzón-Quijorna, E.
1 / 1 shared
Selinger, T. Schwarz
1 / 1 shared
López, G. García
1 / 1 shared
Riveiro, A.
1 / 1 shared
Comesana, R.
1 / 1 shared
Del Val, J.
1 / 1 shared
Boutinguiza, M.
1 / 4 shared
Lusquinos, F.
1 / 3 shared
Teresa Perez-Prado, M.
1 / 3 shared
Jones, Jr
1 / 20 shared
Pou, J.
1 / 4 shared
Ramon Novoa, X.
1 / 1 shared
Pou-Alvarez, P.
1 / 1 shared
Staubitz, A.
1 / 1 shared
Mishra, Y. K.
2 / 13 shared
Adelung, Rainer
2 / 120 shared
Shree, Sindu
1 / 6 shared
Schulz-Senft, M.
1 / 1 shared
Kruszynska, M.
1 / 1 shared
Ohland, J.
1 / 2 shared
Riedel, I.
1 / 11 shared
Parisi, J.
1 / 14 shared
Borchert, H.
1 / 3 shared
Kolny-Olesiak, J.
1 / 2 shared
Brandenburg, Jann-Erik
1 / 2 shared
Bathnagar, A.
1 / 1 shared
Koschine, T.
1 / 1 shared
Gedamu, D.
1 / 2 shared
Kaps, S.
1 / 2 shared
Wille, S.
1 / 6 shared
Chart of publication period
2024
2021
2016
2011

Co-Authors (by relevance)

  • Azevedo, Jmc
  • Murray, Jw
  • Liao, Z.
  • Cleaver, Cj
  • Clare, At
  • Allwood, Jm
  • Cullen, Jm
  • Zhou, W.
  • Šestan, A.
  • Djurabekova, Flyura Gatifovna
  • Markelj, S.
  • Kelemen, M.
  • Nordlund, Kai
  • Granberg, Fredric
  • Crespillo, M. L.
  • Lu, Eryang
  • Zavašnik, J.
  • Punzón-Quijorna, E.
  • Selinger, T. Schwarz
  • López, G. García
  • Riveiro, A.
  • Comesana, R.
  • Del Val, J.
  • Boutinguiza, M.
  • Lusquinos, F.
  • Teresa Perez-Prado, M.
  • Jones, Jr
  • Pou, J.
  • Ramon Novoa, X.
  • Pou-Alvarez, P.
  • Staubitz, A.
  • Mishra, Y. K.
  • Adelung, Rainer
  • Shree, Sindu
  • Schulz-Senft, M.
  • Kruszynska, M.
  • Ohland, J.
  • Riedel, I.
  • Parisi, J.
  • Borchert, H.
  • Kolny-Olesiak, J.
  • Brandenburg, Jann-Erik
  • Bathnagar, A.
  • Koschine, T.
  • Gedamu, D.
  • Kaps, S.
  • Wille, S.
OrganizationsLocationPeople

document

ZnO core spike particles and nano-networks and their wide range of applications

  • Jin, X.
  • Bathnagar, A.
  • Mishra, Y. K.
  • Koschine, T.
  • Gedamu, D.
  • Adelung, Rainer
  • Kaps, S.
  • Wille, S.
Abstract

<p>In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or II-VI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.</p>

Topics
  • impedance spectroscopy
  • polymer
  • Oxygen
  • melt
  • semiconductor
  • composite
  • Silicon
  • ceramic
  • wire